3D Sensing and Sensor Fusion

Péter Kozma and Iván Eichhardt {kozmapeter,eiiraai}@inf.elte.hu

> Eötvös Loránd University Faculty of Informatics

2024 fall (2024-2025-1)

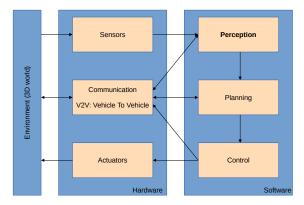
イロト イポト イヨト イヨト

Teachers

Motivation Subject Overview Content Requirements

3DSSF Teachers

- Péter Kozma
- Iván Eichhardt
- Tamás Tófalvi
- Tarlan Ahadli
- Levente Hajder

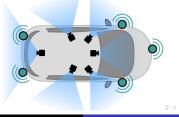

< ロ > < 回 > < 回 > < 回 > < 回 >

- 3D vision is a very important domain within computer engineering/science
 - Tasks are usually very challenging
 - Results are very spectacular
 - Needs both high theoretical and practical skills
- Several sensors can be connected to computers
- Different modalities have different benefits/disadvantages
 - Measured data can be fused to exploit the advantages

Motivation 2/2

System Overview of an Autonomous Vehicle

Kozma & Hajder 3D Sensing and Sensor Fusion


<ロ> <四> <四> <四> <三< => < 三> <三< => 三三

Subject Overview (1/2)

- Goal: overview of (i) (advanced) 3D vision and (ii) sensor fusion methods
- In modern sensor setups, several devices applied
 - Digital cameras
 - Depth sensors (structured light, ToF,)
 - Light Detection and Ranging (LiDAR): 3D and 2D
 - Global positioning system (GPS GPSS)
 - Acoustic sensors (ultrasonic)
 - Thermal cameras
 - Radars
 - Inertial Measurement Unit (IMU) accelerometer, magnetometer, gyroscope
 - High-density (HD) Semantic Maps
- In this course, we principally concentrate on multi-view images, 2D and 3D LiDAR scans, radars, GNSS/GPS, IMU, ...

Subject Overview (2/2)

- Two sensors can be used together if they are
 - synchronized in time (usually via timestamps) and
 - their 3D pose are know w.r.t. each other
- This course principally focuses on 3D pose estimation
 - $\rightarrow~$ Pose: rigid transformation
 - $\rightarrow\,$ 3D rotation and translation, aka. extrinsic parameters, aka. pose
- In human-made environments, bird-eye view is preferred for the data.

- Pose can be estimated by calibration
- There are two ways for calibration
 - Offline
 - $\rightarrow~$ Calibration object is applied
 - Online
 - $\rightarrow~$ Environment reconstruction carried out
- Target object have usually well define surfaces/shapes
 - 2D: lines, circles, ellipses,...
 - 3D: planes, spheres, cylinders, ...

3DSSF Content

- Introduction to estimation theory
 - Focus: surface/curve fitting
- Robust estimation and the L_1 norm
- Transformations, projections
- Lie algebra
- Optimal point set registration
- LiDAR-camera calibration
 - using planar or spherical objects
- Many surprises by Péter Kozma

.

3DSSF Requirements

- Lecture
 - Oral exam in examination period
 - Topics will be published before exam-period
- Practice
 - Two assignment in termtime
- Combined mark is given: 50-50% from oral exam and assignment
 - Satisfactory should be reached for noth assignment and oral exam
- Final grade
 - 5 (excellent): \geq 85%
 - 4 (good): 70 ... 84 %
 - 3 (satisfactory): 55 ... 69 %
 - 2 (pass): 40 ... 54 %
 - 1 (fail): < 40%

A B K A B K

- Canvas https://canvas.elte.hu
 - Materials
 - Assignments
- Webpage https://cg.elte.hu
 - Under construction
- Teams
 - It will be created next week.

イロト イヨト イヨト イヨト

- On Wednesdays,
 - 16.00-17.300
 - North Building, lab. 0.99
- Teacher: Péter Kozma

イロト イヨト イヨト イヨト

臣

Extra Practice

- Demonstation of our vehicles and sensor-kit
- We gather at the 'Danube entrance' of South Building
 - together with '3D Comp. Vision' students
 - Wednesday, 11th September, 17:45

