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1 Introduction

The goal of the application of Lagrangian multiplier is to solve constrained
minimization/maximization problems.

1.1 2D problem

In 2D, the task is to minimize the function f(x, y) subject to g(x, y) = c. The
problem can be visualized as follows:

(Image is from Wikipedia.)
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In the image, di�erent di values form di�erent level sets. The curves f(x, y) =
di shows the locations where the value of the function f equals to di. Similarly,
g(x, y) = c is the curve, where the constraint is valid. When the curve g is tan-
gent of a level set f(x, y) = di, the minimum/maximum or in�exion is reached.
Formally, the normal of the curves can be obtained by calculation the gradient
of the curves. They should be parallel:[

∂f
∂x
∂f
∂x

]
= λ

[
∂g
∂x
∂g
∂x

]
The idea of the famous Italian-French mathematician Joseph-Louis Lagrange

is that the parallelity of the tangents and the constraint can be written in a cost
function as

J = f(x, y)− λ(g(x, y)− c)

If one calculates the derivatives w.r.t. x and y, the paralellity is yielded:

∂J

∂x
=
∂f

∂x
− λ∂g

∂x
= 0→ ∂f

∂x
= λ

∂g

∂x

∂J

∂y
=
∂f

∂y
− λ∂g

∂y
= 0→ ∂f

∂y
= λ

∂g

∂y

The derivative w.r.t. λ gives back the constraint:

∂J

∂λ
= g(x, y)− c = 0→ g(x, y) = c

Therefore, a novel parameter is introducted and the cost function is modi�ed.
The new parameter λ is named Lagrange-multiplier in the literature.

1.2 Applying a Lagrange multiplier in arbitrary dimen-
sions

The application of Lagrangien multipliers is not limited to the 2D case, it works
in arbitrary dimensions. The cost function is then as follows:

J = f(x)− λ(g(x)− c)

where vector x consists of the parameters to be optimized.
The parallelity is valid if the following term is true:

∂J

∂x
= ∇J − λ∇g = 0→ ∇J = λ∇g

Derivative w.r.t. multiplier λ gives the contraint similarly to the 2S case:

∂J

∂λ
= g(x)− c = 0→ g(x) = c
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2 Application: optimal solution for a homoge-
neous linear system of equations.

The task is to solve the problem

Ax = 0

For the overdetermined case, the norm of Ax has to be minimized. Thus
the algebraic problem is to minimize the term:

argmin
x

xTATAx

It is trivial that x = 0 solves exactly the problem, however, one wants to �nd
the non-trivial solution. Therefore, a constraint has to be introduced: let the
length of vector xbe unit:

xTx = 1

TIn this case, the minimization problem becomes

argmin
{
xTATAx− λ

(
xTx− 1

)}
The solution is obtained by derivating the cost function J = xTATA x−

λ
(
xTx− 1

)
∂J

∂x
= 2ATAx − 2λx = 0

This yields

ATAx = λx

This is a standard eigenvalue problem, the minima/maxima occur when x
is one of the eigenvector of matrix ATA.

The eigenvectors are substituted back to the original cost function:

xTATAx = λxT x = λ

as xTx = 1. Thereofere, the cost equals to the eigenvalue. Remark that the
symmetrix matrix ATA always has non-negative real eigenvalues.

The optimal value for the minimization is the eigenvector of ATA corre-
sponding to the smallest eigenvalue. If the problem is to �nd the maximum
of the least-squares norm of Ax, then the optimum is the eigenvector of ATA
corresponding to the largest eigenvalue.
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3 Application in computer vision: plane �tting

A plane is given in implicit form as

ax+ by + cz + d = 0

Thic can be written in homogeneous form as

[
x y z 1

] 
a
b
c
d

 = 0

If points in the plane are given, each one forms an equation as axi + byi +
czi + d = 0. N points yields the following linear system of equations:

x1 y1 z1 1
x2 y2 z2 1
...

...
...

...
xN yN zN 1



a
b
c
d

 = 0

The optimal solution is the eigenvector corresponding to the smallest eigen-
value of matrix
x1 x2 . . . xN
y1 y2 . . . yN
z1 z2 . . . zN
1 1 . . . 1




x1 y1 z1 1
x2 y2 z2 1
...

...
...

...
xN yN zN 1

 =


∑
x2i

∑
xiyi

∑
xizi

∑
xi∑

xiyi
∑
y2i

∑
yiz

∑
yi∑

xizi
∑
yizi

∑
z2i

∑
zi∑

xi
∑
yi

∑
zi N



4 Application in geometry: optimal line/plane
�tting

For optimal line/plane �tting, the distance between a line and a point should
be determined. The line is given by its implicit form

ax+ by + c = 0

If plane-point distance has to be calculated, the plane can also be given by
an implicit form as

ax+ by + cz + d = 0

In general, an N-dimensional (hyper)plane is given as

lT x+m = 0

were lT = [a, b] for lines, lT = [a, b, c] for planes, ets.
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4.1 Distance of a point and a line/plane

For computing the distance of point x0, the problem can be written by applying
a Lagrangian multiplier λ:

J = (x− x0)
T
(x− x0) + λ

(
lT x+m

)
The solution is given by derivating the problem:

∂J

∂x
= 2 (x− x0) + λl = 0

Therefore,

x =
2x0 − λl

2

Multiplier λ is given from the constraint lT x+m = 0:

lT
2x0 − λl

2
+m = 0

lTx0 +m =
λlT l

2

λ = 2
lTx0 +m

lT l

The distance vector itself is

x− x0 =
2x0 − 2 lTx0+m

lT l
l

2
− x0 =

x− x0 = − lTx+m

lT l
l

Its length is the distance value:

d =

√
(x− x0)

T
(x− x0) =

lTx+m

lT l

√
lT l =

lTx+m√
lT l

If lT l = 1, then d = lTx0 +m, in other words, the implicit equation gives
the distance itself.

Remark that this distance calculation is valid for arbitrary dimension.
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4.2 Optimal line/plane �tting

If there are N data points for which the line/plane has to be �tted, the problem
of �nding the most dominant direction of the can be written in as

4.2.1 Translation

argminJ = argmin

N∑
i=1

d2i = argmin

N∑
i=1

(
lT (xi + t)

)2

∂J

∂t
= 2

N∑
i=1

lT (xi + t) l = lT
N∑
i=1

[xi + t] l = 0

N∑
i=1

[xi + t] = 0

t = −
∑

xi

N

Or, in other words, the optimal translation is the center of the gravity of the
points.

4.3 Rotation

For the sake of simplicity, let the origin be the center of gravity. Then only the
direction of the line should be determined:

argmin

N∑
i=1

d2i = argmin

N∑
i=1

(
lTxi

)
subject to lT l=1.
This is equivalent to a simple homogeneous linear problem:

Xl = 0

where

X =


xT
1

xT
1
...

xT
N


The solution is the eigenvektor of matrixXTX corresponding to the smallest

eigenvalue. The obtained vector l is the normal of the line/plane.
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5 Singular Value Decomposition

Given a matrix A(size:N ×M), its singular value decompostion always exists,
and can be written in the form

A = USV T

where matrix U and V are orthogonal, thus

UTU = IN×N ,

V TV = IM×M

and S is a diagonal matrix

S =



σ1 0 · · · 0
0 σ2 · · · 0
...

... · · ·
...

0 0 · · · σM
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


The columns of matrices U and V are the eigenvectors of AAT and ATA,

respectively, and the square roots of the eigenvalues of the matrices are stacked
in σi. Remark that the eigenvalues of AAT and ATA are the same, and they
are listed in descending order. All eigenvalues are non-negative real numbers.
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