Robust model fitting by RANSAC

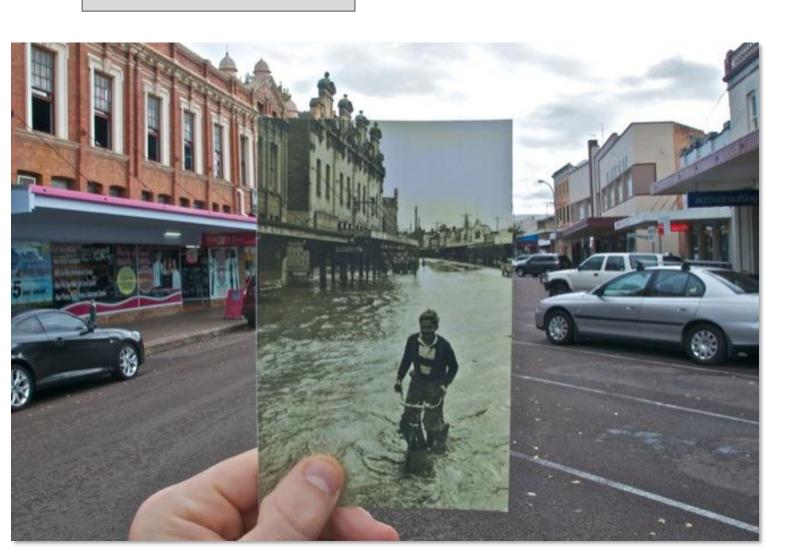
Tekla Tóth

(materials: based on Dániel Baráth's work)

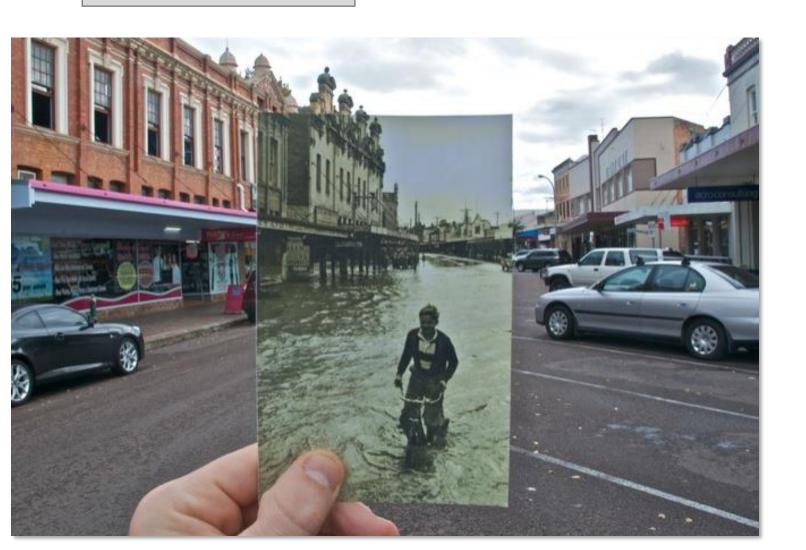
Outline

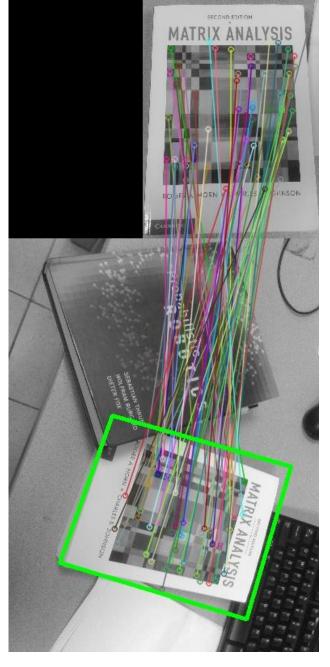
- Motivation
- RANdom SAmple Consensus (RANSAC) algorithm
 - Line fitting in 2D
 - General solution
- Parameter settings
- Pros and Cons
- Techniques to optimize the performance

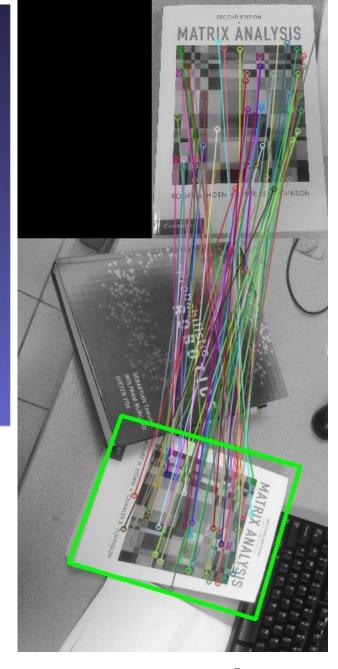
Motivation



Motivation

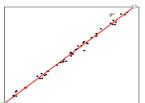




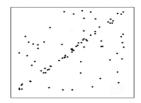


Taxonomy of Geometric Estimation Problems

Standard Single Class Single Instance Fitting Problem (SCSI)

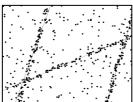


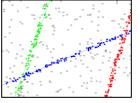
• Robust Single Class Single Instance Fitting Problem (R-SCSI)



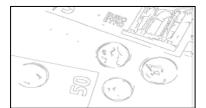


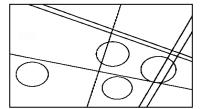
Single Class Multiple Instance Fitting Problem (SCMI)





Multiple Class Multiple Instance Fitting Problem (MCMI)





Single/Multi-Class S/M-Instance Fitting Applications

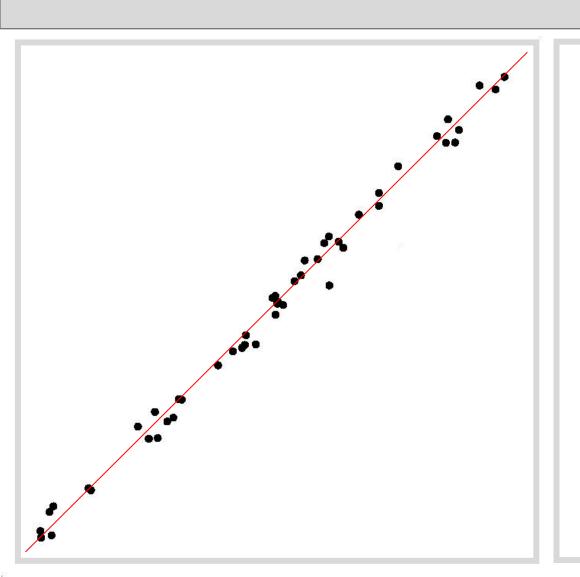
detection of geometric primitives

- epipolar geometry estimation
- detection of planar surfaces



Interpretation of lidar scans

The Standard SCSI Problem –2D Line Fitting



• Data points:

$$\mathcal{X} = \{\mathbf{x}_j, j = 1, 2, ..., N_p\}$$

$$(\mathbf{x}_j \in \mathbb{R}^2)$$

• **Goal**: Find the line with parameters which "best fits" these points.

Finding Line: Line Parametrization

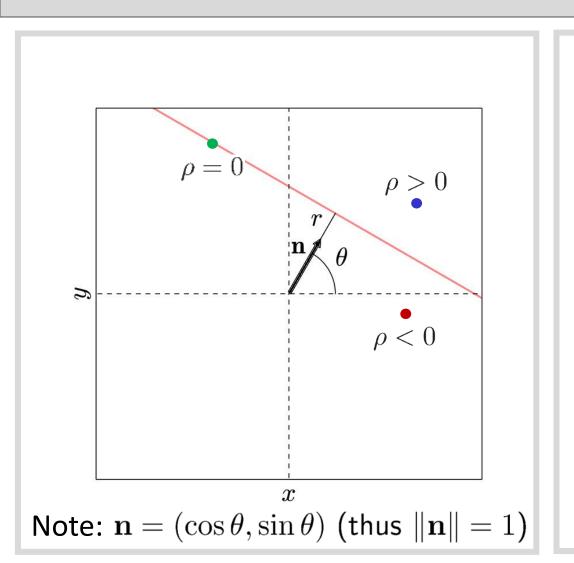
Line parametrization – homogeneus

$$ax + by + c = 0,$$
 $(a \neq 0 \lor b \neq 0)$ (1)
 $a, b, c \in \mathbb{R}$: line parameters (2)
 (x, y) : point coordinates (3)

Line parametrization – radial

$$x\cos\theta + y\sin\theta = r,$$
 (4)
 $\theta \in [0, \pi[, r \in \mathbb{R} : \text{line parameters}]$ (5)

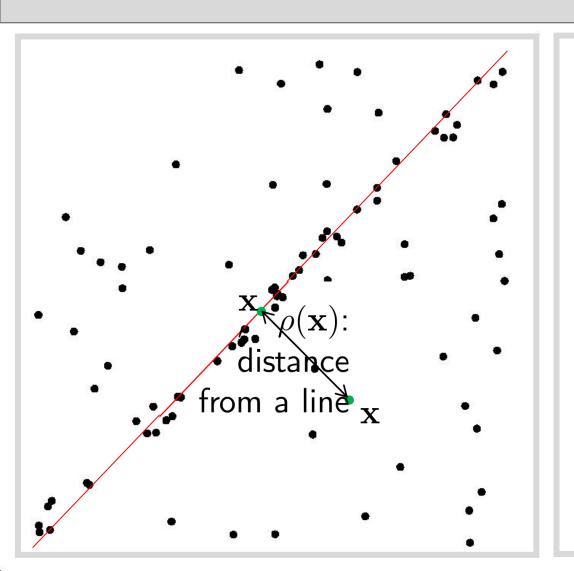
The Standard SCSI Problem –2D Line Fitting



• Line parameters: $\theta \in [0, \pi[, r \in \mathbb{R}]$

- Point $\mathbf{x} = (x, y)$ on the line: $x \cos \theta + y \sin \theta = r$ $\Leftrightarrow \mathbf{x} \cdot (\cos \theta, \sin \theta) = r$
- Point $\mathbf{x} = (x, y)$ not on the line: $\mathbf{x} \cdot (\cos \theta, \sin \theta) \neq r$
 - Signed distance $\rho(\mathbf{x})$ from line: $\rho(\mathbf{x}) = \mathbf{x} \cdot (\cos \theta, \sin \theta) r$

The Standard SCSI Problem –2D Line Fitting



• Data points:

$$\mathcal{X} = \{\mathbf{x}_j, j = 1, 2, ..., N_p\}$$
$$(\mathbf{x}_j \in \mathbb{R}^2)$$

- **Goal**: Find the line with parameters which "best fits" these points.
- As optimization: Find best line with parameters θ^* as:

$$\theta^* = \operatorname*{argmin}_{\theta} \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \theta)$$

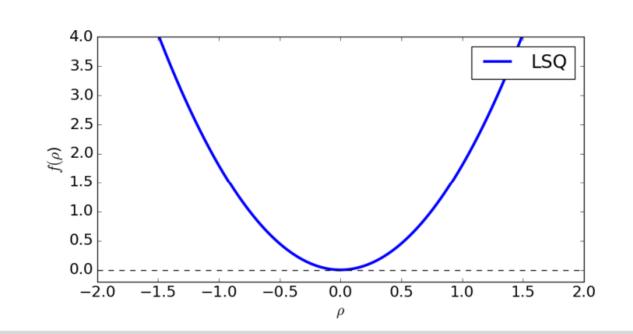
• For $f_{LSQ}(\mathbf{x}, \theta) = [\rho(\mathbf{x})]^2$: solvable by SVD

Standard Model Fitting - Formulation

Line fitting – Least Squares:

$$\theta = (r, \phi)$$

$$f_{LSQ}(\mathbf{x}, \theta) = [\rho(\mathbf{x})]^2$$

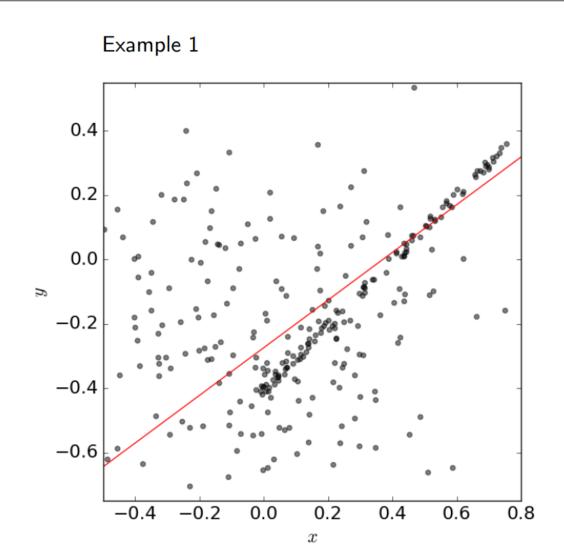


Notes:

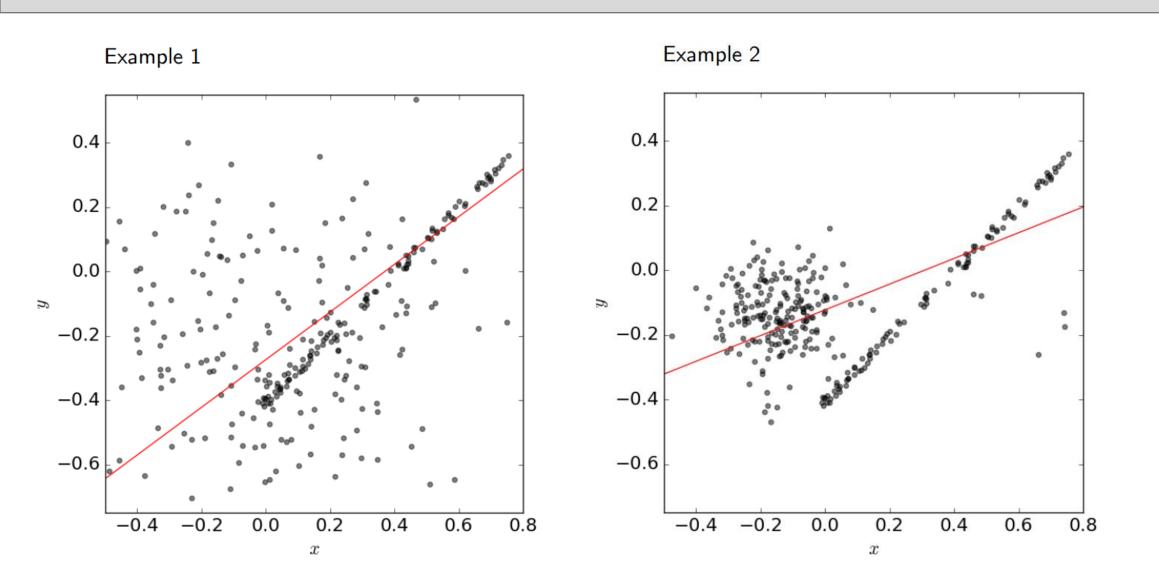
- justified as maximum-likelihood method for noise with normal distribution
- used by Gauss ~ 1800

• Laplace considered, in the late 1700's, the sum of absolute differences $f(x, \theta) = |\rho(\mathbf{x})|$

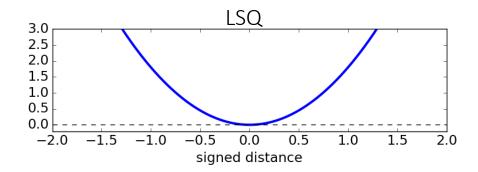
Line Fitting with Outliers - Least squares fit

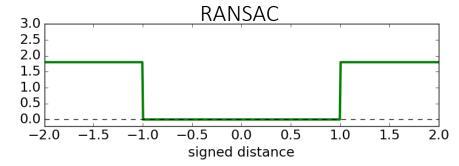


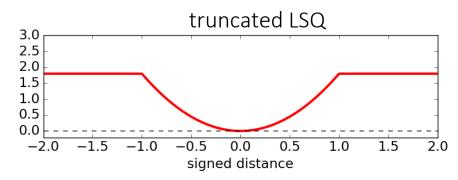
Line Fitting with Outliers - Least squares fit



The SCSI Model Fitting Problem – Robust Loss







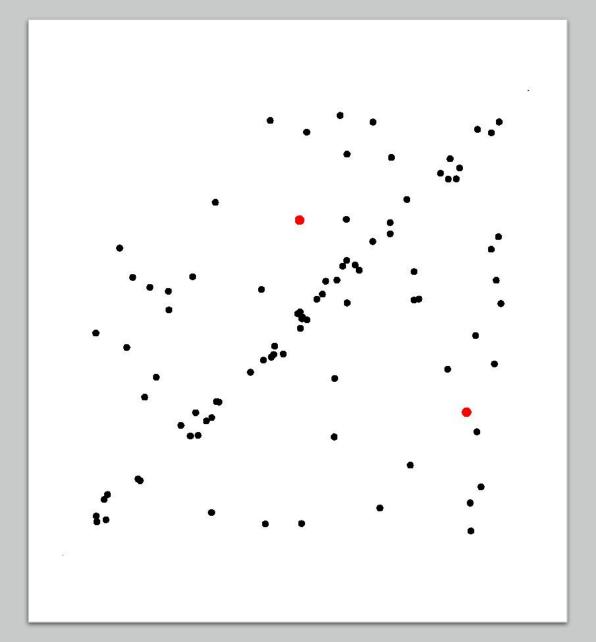
Line fitting – Least Squares:

$$\theta = (r, \phi)$$
$$f_{LSQ}(\mathbf{x}, \theta) = [\rho(\mathbf{x})]^2$$

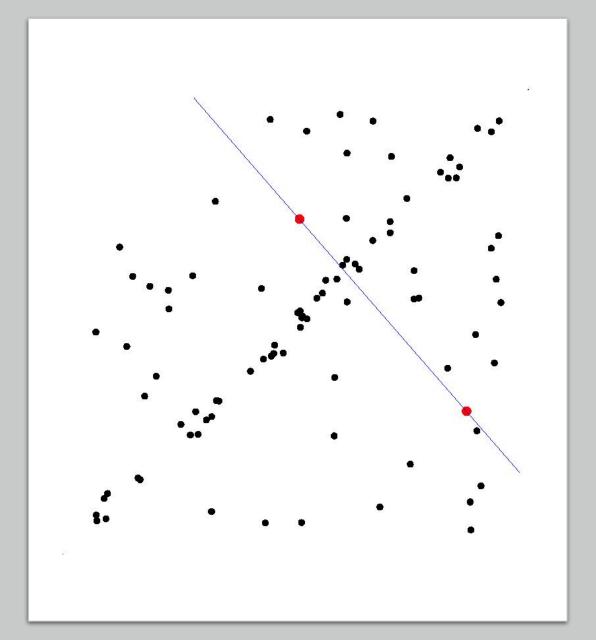
• Line fitting – Robust:

$$f_{\mathsf{RANSAC}}(\mathbf{x}, \theta) = \begin{cases} 0, & \text{if } \rho(\mathbf{x}) \leq \mathsf{threshold} \ \sigma \\ \mathsf{const}, & \text{otherwise} \end{cases}$$

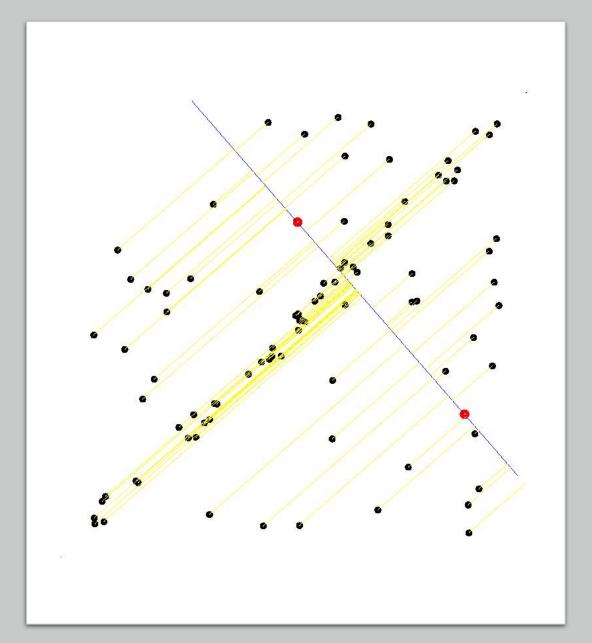
• Select sample of *m* points at random



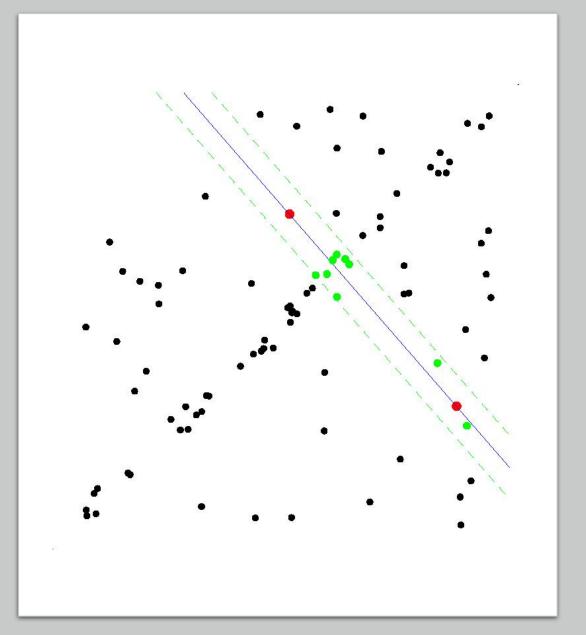
- Select sample of *m* points at random
- Estimate model parameters from the data in the sample



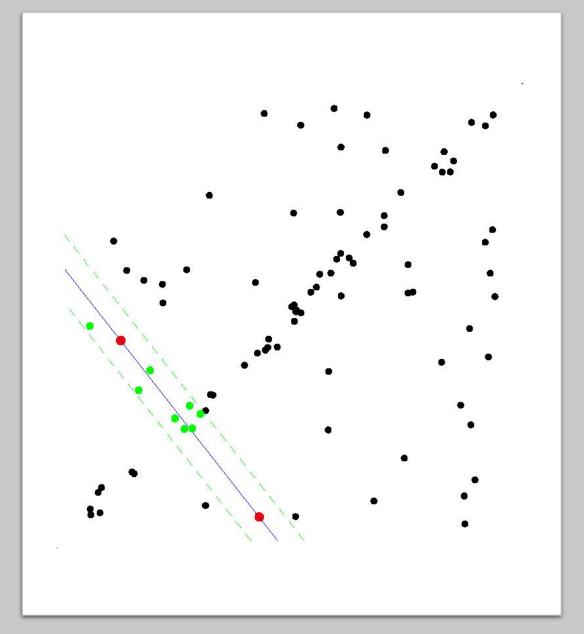
- Select sample of *m* points at random
- Estimate model parameters from the data in the sample
- Evaluate the error (residual) for each data point



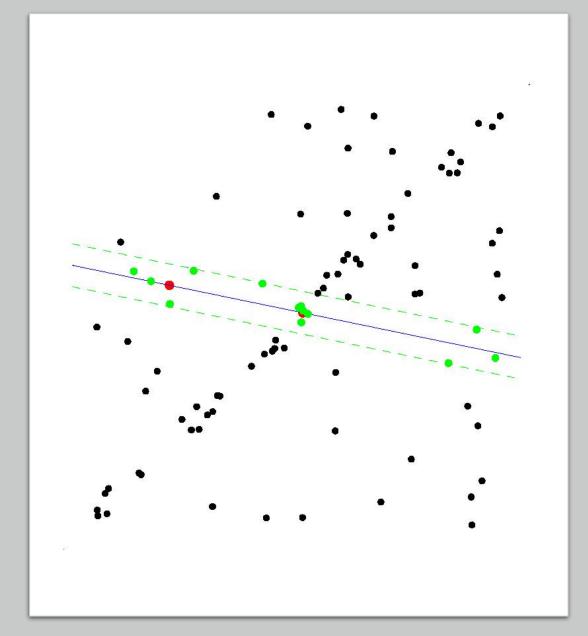
- Select sample of *m* points at random
- Estimate model parameters from the data in the sample
- Evaluate the error (residual) for each data point
- Select data that support the current hypothesis



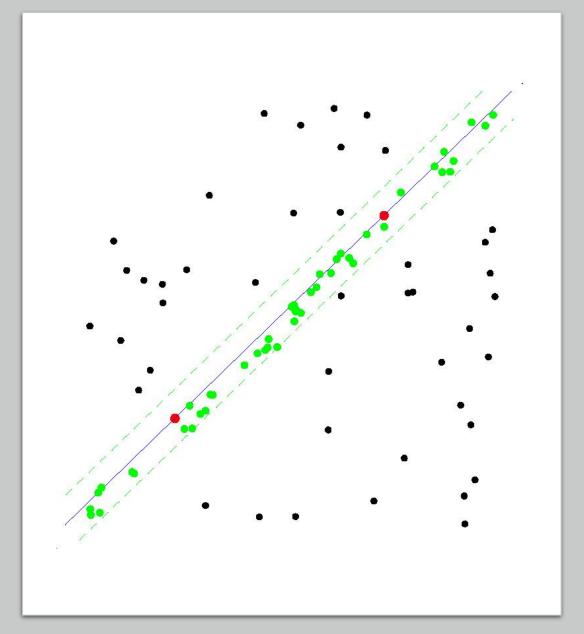
- Select sample of *m* points at random
- Estimate model parameters from the data in the sample
- Evaluate the error (residual) for each data point
- Select data that support the current hypothesis
- Repeat sampling



- Select sample of *m* points at random
- Estimate model parameters from the data in the sample
- Evaluate the error (residual) for each data point
- Select data that support the current hypothesis
- Repeat sampling



- Select sample of *m* points at random
- Estimate model parameters from the data in the sample
- Evaluate the error (residual) for each data point
- Select data that support the current hypothesis
- Repeat sampling



Input:
$$\mathcal{X} = \{\mathbf{x}_j\}_{j=1}^N$$
 data points $e(S) = \theta$ estimates model parameters θ given sample $S \subseteq \mathcal{X}$
$$f(\mathbf{x}, \theta) = \begin{cases} 0, & \text{if distance to model} \leq \text{ threshold } \sigma \\ 1, & \text{otherwise} \end{cases}$$
 Cost function for single data point \mathbf{x} $\Rightarrow J(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \theta)$ is $\#$ outliers

 η – required confidence in the solution, σ – outlier threshold

Output: θ^* parameter of the model minimizing the cost function

1:
$$iter \leftarrow 0, J^* \leftarrow \infty$$

2: repeat

3: Select random
$$S \subseteq \mathcal{X}$$
 (sample size $m = |S|$) SAMPLING

4: Estimate parameters $\theta = e(S)$

5: Evaluate
$$J(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \theta)$$

VERIFICATION

6: If
$$J(\theta) < J^*$$
 then

SO-FAR-THE-BEST

$$\theta^* \leftarrow \theta, J^* \leftarrow J(\theta)$$

7: $iter \leftarrow iter + 1$

8: **until**
$$P(\text{better solution exists}) = f(|\mathcal{X}|, J^*, iter) < \eta$$

9: Compute
$$\theta^*$$
 from all inliers \mathcal{X}_{in} : $\theta^* \leftarrow \mathsf{LocalOptimization}(\mathcal{X}_{in}, \theta^*)$

RANSAC [Fischler and Bolles 1981]

How many samples?

RANSAC – Probabilistic Quality Guarantee:

- *N* Number of points
- Q Number of inliers, $Q = N J^*$
- m Size of sample
- $\epsilon = Q/N$ Inlier ratio

Probability of all-inlier (uncontaminated) sample:

$$P(\text{inlier sample}) = \frac{\binom{Q}{m}}{\binom{N}{m}} \approx \epsilon^m$$

Hitting at least one all-inlier sample with probability η requires drawing $k \ge \log(1 - \eta) / \log(1 - \epsilon^m)$ samples.

On average, one in 1/P samples is all-inlier.

RANSAC termination - How many samples?

Inlier ratio $\epsilon = Q/N$ [%]

Ш
<u>e</u>
d
Ξ
Sal
e G
th
_
of
Ģ
Siz

	15%	20%	30%	40%	50%	70%
2	132	73	32	17	10	4
4	5916	1871	368	116	46	11
7	$1.75 \cdot 10^{6}$	$2.34 \cdot 10^5$	$1.37 \cdot 10^4$	1827	382	35
8	$1.17 \cdot 10^{7}$	$1.17 \cdot 10^6$	$4.57 \cdot 10^4$	4570	765	50
12	$2.31 \cdot 10^{10}$	$7.31 \cdot 10^8$	$5.64 \cdot 10^{6}$	$1.79 \cdot 10^5$	$1.23 \cdot 10^4$	215
18	$2.08 \cdot 10^{15}$	$1.14 \cdot 10^{13}$	$7.73 \cdot 10^9$	$4.36 \cdot 10^{7}$	$7.85 \cdot 10^5$	1838
30	∞	∞	$1.35 \cdot 10^{16}$	$2.60 \cdot 10^{12}$	$3.22 \cdot 10^9$	$1.33 \cdot 10^5$
40	∞	∞	∞	$2.70 \cdot 10^{16}$	$3.29 \cdot 10^{12}$	$4.71 \cdot 10^6$

computed for $\eta = 0.95$

RANSAC termination - How many samples?

Inlier ratio $\epsilon = Q/N$ [%]

Ш
<u>e</u>
Q
Ξ
Sa
Ф
th
of.
ize
Si

	15%	20%	30%	40%	50%	70%
2	132	73	32	17	10	4
4	5916	1871	368	116	46	11
7	$1.75 \cdot 10^6$	$2.34 \cdot 10^5$	$1.37 \cdot 10^4$	1827	382	35
8	$1.17 \cdot 10^7$	$1.17 \cdot 10^{6}$	$4.57 \cdot 10^4$	4570	765	50
12	$2.31 \cdot 10^{10}$	$7.31 \cdot 10^8$	$5.64 \cdot 10^{6}$	$1.79 \cdot 10^5$	$1.23 \cdot 10^4$	215
18	$2.08 \cdot 10^{15}$	$1.14 \cdot 10^{13}$	$7.73 \cdot 10^9$	$4.36 \cdot 10^{7}$	$7.85 \cdot 10^5$	1838
30	∞	∞	$1.35 \cdot 10^{16}$	$2.60 \cdot 10^{12}$	$3.22 \cdot 10^9$	$1.33 \cdot 10^5$
40	∞	∞	∞	$2.70 \cdot 10^{16}$	$3.29 \cdot 10^{12}$	$4.71 \cdot 10^6$

Eg.:

computed for $\eta = 0.95$

- Line: m = 2
- Plane: m = 3
- Sphere: m = 4
- Ellipse: m = 5

RANSAC Notes

Pros

- extremely popular
 - Google Scholar:

Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
MA Fischler, RC Bolles
Communications of the ACM 24 (6), 381-395

- used in many applications
- percentage of inliers not needed and not limited
- a probabilistic guarantee for the solution
- mild assumptions: sigma is known

Cons

- slow if inlier ratio low
- It was observed experimentally that RANSAC takes several times longer than theoretically expected
 - due to noise
 - not every all-inlier sample generates a good hypothesis

 $P(\text{inlier sample}) \neq P(\text{good model estimate})$

$$\begin{array}{ll} \textbf{Input:} \ \mathcal{X} = \{\mathbf{x}_j\}_{j=1}^N & \text{data points} \\ e(S) = \theta & \text{estimates } \textit{model parameters } \theta \text{ given sample } S \subseteq \mathcal{X} \\ f(\mathbf{x}, \theta) = \begin{cases} 0, & \text{if distance to model } \leq \text{threshold } \sigma \\ 1, & \text{otherwise} \end{cases} & \text{Cost function for single data point } \mathbf{x} \\ \Rightarrow J(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \theta) \text{ is } \# \text{outliers} \end{array}$$

 η - required confidence in the solution, σ - outlier threshold

Output: θ^* parameter of the model minimizing the cost function

- 1: $iter \leftarrow 0$. $J^* \leftarrow \infty$
- 2: repeat
- Select random $S \subseteq \mathcal{X}$ (sample size m = |S|)
- Estimate parameters $\theta = e(S)$
- Evaluate $J(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} \overline{f(\mathbf{x}, \theta)}$

State-of-the-art

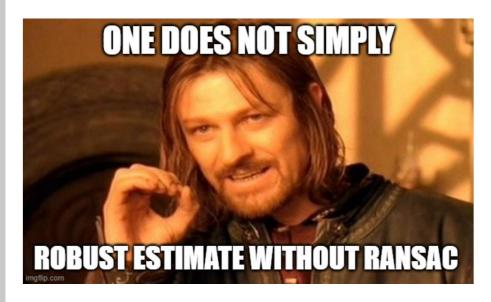
RANSAC

If $J(\theta) < J^*$ then

$$\theta^* \leftarrow \theta$$
, $J^* \leftarrow J(\theta)$

- $iter \leftarrow iter + 1$
- 8: **until** $P(\text{better solution exists}) = f(|\mathcal{X}|, J^*, iter) < \eta$
- 9: Compute θ^* from all inliers \mathcal{X}_{in} : $\theta^* \leftarrow \text{LocalOptimization}(\mathcal{X}_{in}, \theta^*)$

RANSAC case closed? NO



RANSAC Upgrades

- Cost function: MSAC, MLESAC, Huber loss, ...
- Outlier threshold sigma: Least median of Squares, MINPRAN, MAGSAC, ...
- Correctness of the results. Degeneracy.

Solution: DegenSAC.

Accuracy (parameters are estimated from minimal samples).

Solution: Locally Optimized RANSAC, Graph-Cut RANSAC

- **Speed**: Running time grows with
 - 1. number of data points,
 - 2. number of iterations (polynomial in the inlier ratio)
 - Addressing the problem: RANSAC with SPRT (WaldSAC), PROSAC

