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Taxonomy of Geometric Estimation Problems

e Standard Single Class Single Instance Fitting Problem (SCSI)
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* Robust Single Class Single Instance Fitting Problem (R-SCSI)
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* Single Class Multiple Instance Fitting Problem (SCMI)

. . - -~ 1 )

P E L
B ETR w
.. sh e ’ sE T £

R AP = PR =

* Multiple Class Multiple Instance Fitting Problem (MCMI)
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Single/Multi-Class S/M-Instance Fitting Applications

* detection of geometric primitives

e epipolar geometry estimation
» detection of planar surfaces

* multiple motion segmentation

* Interpretation of lidar scans




The Standard SCSI Problem —2D Line Fitting

* Data points:
X =1{x;,7=1,2,... Ny}

(x; € R?)

* Goal: Find the line with parameters
which “best fits” these points.




Finding Line: Line Parametrization

* Line parametrization — homogeneus

ar + by +c¢ =0, (a#0Vb+#0) (1)
a,b,c € R : line parameters (2)
(,y) : point coordinates (3)
* Line parametrization — radial
xcosl + ysinf = r, (4)

0 € [0,7[, € R: line parameters
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The Standard SCSI Problem —2D Line Fitting

Note: n = (cos#,sinf) (thus ||n| = 1)

* Line parameters: # € [0, 7|, r € R

e Point X = (x,y) on the line:
xcost +ysinf =r

< x - (cosf,sinf) =r

* Point x = (z,y) not on the line:

X - (cosf,sinf) #£ r

» Signed distance p(x) from line:

p(x) =x-(cosf,sinf) —r
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The Standard SCSI Problem —2D Line Fitting

* Data points:

X={xj,j=12,..,N,}
(x; € R?)
* Goal: Find the line with parameters

which “best fits” these points.

* As optimization: Find best line with
parameters §* as:

0" = arggwin Z f(x,0)

xeX

e For frso(x,0) = [p(x)]” : solvable by SVD




Standard Model Fitting

- Formulation

Line fitting — Least Squares: Notes:

* justified as maximum-likelihood

method for noise with normal
distribution

used by Gauss ~ 1800

Laplace considered, in the late
1700’s, the sum of absolute

differences f(z, 8) = |p(x)|
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Line Fitting with Outliers - Least squares fit

Example 1
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Line Fitting with Outliers - Least squares fit

Example 1 Example 2

14



The SCSI Model Fitting Problem — Robust Loss
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* Line fitting — Least Squares:

0 =(r,¢)
frsq(x,0) = [p(x)]”

* Line fitting — Robust:

fransac(x,0) = {

0,if p(x) < threshold o

const, otherwise
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Random Sample
Consensus - RANSAC

* Select sample of m points at random
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Random Sample
Consensus - RANSAC

* Select sample of m points at random

* Estimate model parameters
from the data in the sample
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Random Sample
Consensus - RANSAC

* Select sample of m points at random

* Estimate model parameters
from the data in the sample

* Evaluate the error (residual) for each data
point

) : ”:o
\\ w
\\£$ "
« @\ 7
\
X
¢ 87
-

18



Random Sample
Consensus - RANSAC

Select sample of m points at random

Estimate model parameters
from the data in the sample

Evaluate the error (residual) for each data
point

Select data that support
the current hypothesis
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Random Sample
Consensus - RANSAC oL LT

Select sample of m points at random

* Estimate model parameters
from the data in the sample

* Evaluate the error (residual) for each data
point

» Select data that support
the current hypothesis

* Repeat sampling
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Random Sample
Consensus - RANSAC

Select sample of m points at random

* Estimate model parameters
from the data in the sample

* Evaluate the error (residual) for each data
point

» Select data that support
the current hypothesis

* Repeat sampling
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Random Sample
Consensus - RANSAC

Select sample of m points at random

* Estimate model parameters
from the data in the sample

* Evaluate the error (residual) for each data
point

» Select data that support
the current hypothesis

* Repeat sampling
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Input: X = {x;}/, data points

e(S) =40 estimates model parameters 6 given sample S C X

£(x,0) 0, if distance to model < threshold ¢  Cost function for
x,0) =

J 1, otherwise single data point X

= J(0) = > cn f(x.0) is #outliers
1 — required confidence in the solution, o — outlier threshold

Output: 6* parameter of the model minimizing the cost function

1: iter <+ 0, J" < >

2: repeat

3 Select random S C X (sample size m = |S]) SAMPLING

4: Estimate parameters 6 = ¢(.5)

5. Evaluate J(0) = S, 4 f(x,0) VERIFICATION

6:  If J(B) < J* then SO-FAR-THE-BEST
0" < 6, J* < J(0)

7 iter < iter + 1

8: until P(better solution exists) = f(|X|, J*,iter) <n
9: Compute 6* from all inliers Xj,,: 68* < LocalOptimization(X;,, %)

RANSAC
[Fischler and

Bolles 1981}
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How many samples?




RANSAC — Probabilistic Quality Guarantee:

N Number of points
Q Number of inliers, Q=N - J°
m Size of sample

€ = Q/N Inlier ratio

Probability of all-inlier (uncontaminated) sample:

@
P(inlier sample) = M R €

(i)

Hitting at least one all-inlier sample with probability 7 requires drawing

m

k2log(l—1n)/log(1-€m) samples.
On average, one in 1/P samples is all-inlier.



RANSAC termination - How many samples?

Size of the sample m

Inlier ratio € = Q/N [%)]

5% 20% 30% 40% 50% 70%
2 132 73 32 17 10 4
4 5916 1871 368 116 46 11
7 | 1.75-10% | 2.34.10° | 1.37-104 1827 382 35
8 | 1.17-107 | 1.17-10° | 4.57-10% 4570 765 50
12 (231-1019 | 7.31.10% | 5.64-105 | 1.79-10° | 1.23-.10% 215
18 | 2.08-10 | 1.14-10% | 7.73-10Y | 4.36-107 | 7.85-10° 1838
30 ~ O 1.35-101% | 2.60-10 | 3.22-10% | 1.33-10°
40 00 0 x 2.70 - 101 | 3.29. 1012 | 4.71 - 10°

computed forn = 0.95




RANSAC termination - How many samples?

Inlier ratio € = Q/N [%)]

15% 20% 30% 40% 50% 70%
§ 2 132 73 32 17 10 4
- | 4 5916 1871 368 116 46 11
€77 [ 1.75-10° | 2.34-10° | 1.37 - 10 1827 382 35
é 8 | 1.17-107 | 1.17-10° | 4.57- 10? 4570 765 50
212230108 | 7.31-10% | 5.64-10° | 1.79-10° | 1.23-10% 215
S 118208 10" | 114108 | 7.73-10 | 4.36-107 | 7.85- 10° 1838
> | 30 ~ O 1.35-101% | 2.60- 1012 | 3.22-10 | 1.33-10°
40 o O tx; 2.70-1016 1 3.29. 1012 | 4.71 - 10
Line: m=2 computed forn = 0.95
Plane: m =3
Sphere: m=4
Ellipse: m=5




RANSAC Notes

Pros

e extremely popular
* Google Scholar:

cim HIVATKOZOTT RA EV

Random sample consensus: a paradigm for model fitting with 26859 | 1981
applications to image analysis and automated cartography
M Fischler, RC Bolles

Communications of the ACM 24 (B), 381-395

used in many applications

percentage of inliers not needed and not
limited

a probabilistic guarantee for the solution
* mild assumptions: sigma is known

Cons
e slow if inlier ratio low

* |t was observed experimentally that
RANSAC takes several times longer
than theoretically expected

 due to noise

* not every all-inlier sample
generates a good hypothesis

P(inlier sample) # P(good model estimate)



Input: X = {x;}/, data points
e(S) =40 estimates model parameters 6 given sample S C X
F(x.0) = {(), if distance to model < threshold &  Cost function for

’ 1, otherwise single data point X

= J(0) = > cn f(x.0) is #outliers
1 — required confidence in the solution, o — outlier threshold

Output: 6* parameter of the model minimizing the cost function

1: iter <+ 0, J" < >

2: repeat
3: Select random S C X (sample size m = [S|)
4: Estimate parameters 0 = ¢(.5)
5. Evaluate J(0) =5, f(x,0) State-of-the-art
6: If J(0) < J* then
0% 6, J" « J(0) RANSAC
7: iter < iter + 1

8: until P(better solution exists) = f(|X|, J*, iter) <n
9: Compute 6* from all inliers Xj,,: 68* < LocalOptimization(X;,, %)

RANSAC
case closed?

NO

ONEDOES NOT SIMPLY,

ROBUSTESTIMATE WITHOUT RANSAC
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RANSAC Upgrades

e Cost function: MSAC, MLESAC, Huber loss, ...
e Outlier threshold sigma: Least median of Squares, MINPRAN, MAGSAC, ...

* Correctness of the results. Degeneracy.
Solution: DegenSAC.

* Accuracy (parameters are estimated from minimal samples).
Solution: Locally Optimized RANSAC, Graph-Cut RANSAC

e Speed: Running time grows with
1. number of data points,

2. number of iterations (polynomial in the inlier ratio)
* Addressing the problem: RANSAC with SPRT (WaldSAC), PROSAC



Thank Youl!




