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• Standard Single Class Single Instance Fitting Problem (SCSI)

→

• Robust Single Class Single Instance Fitting Problem (R-SCSI)

→   

• Single Class Multiple Instance Fitting Problem (SCMI)

→

• Multiple Class Multiple Instance Fitting Problem (MCMI)

→

Taxonomy of Geometric Estimation Problems
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• detection of geometric primitives

• epipolar geometry estimation

• detection of planar surfaces

• multiple motion segmentation

• Interpretation of lidar scans

Single/Multi-Class S/M-Instance Fitting Applications



The Standard SCSI Problem –2D Line Fitting
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• Data points:

• Goal: Find the line with parameters  
which “best fits” these points. 



Finding Line: Line Parametrization

• Line parametrization – homogeneus

• Line parametrization – radial
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• Line parameters:

• Point on the line:

• Point not on the line:

• Signed distance from line:
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The Standard SCSI Problem –2D Line Fitting

Note: 
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• Data points:

• Goal: Find the line with parameters  
which “best fits” these points. 

• As optimization: Find best line with 
parameters as:

• For : solvable by SVD

The Standard SCSI Problem –2D Line Fitting



Standard Model Fitting - Formulation
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Notes:

• justified as maximum-likelihood 
method for noise with normal 
distribution 

• used by Gauss ~ 1800 

• Laplace considered, in the late 
1700’s, the sum of absolute 
differences

Line fitting – Least Squares:



Line Fitting with Outliers - Least squares fit
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Line Fitting with Outliers - Least squares fit
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The SCSI Model Fitting Problem – Robust Loss
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LSQ

RANSAC 

truncated LSQ

• Line fitting – Least Squares:

• Line fitting – Robust:



Random Sample 
Consensus - RANSAC
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• Select sample of m points at random



Random Sample 
Consensus - RANSAC

17

• Select sample of m points at random

• Estimate model parameters 
from the data in the sample
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• Select sample of m points at random

• Estimate model parameters 
from the data in the sample

• Evaluate the error (residual) for each data 
point
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• Select sample of m points at random

• Estimate model parameters 
from the data in the sample
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point

• Select data that support 
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• Repeat sampling
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Random Sample 
Consensus - RANSAC

• Select sample of m points at random

• Estimate model parameters 
from the data in the sample

• Evaluate the error (residual) for each data 
point

• Select data that support 
the current hypothesis

• Repeat sampling
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RANSAC
[Fischler and 
Bolles 1981]
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SAMPLING

VERIFICATION
SO-FAR-THE-BEST

Cost function for
single data point x



How many samples?
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RANSAC – Probabilistic Quality Guarantee:
• N Number of points

• Q Number of inliers, Q = N – J*

• m Size of sample

• ϵ = Q/N Inlier ratio

Probability of all-inlier (uncontaminated) sample: 

Hitting at least one all-inlier sample with probability h requires drawing

k ≥ log(1 – h) / log (1 – ϵm)     samples.

On average, one in 1/P samples is  all-inlier.
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RANSAC termination - How many samples?
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computed for η = 0.95

Inlier ratio 𝜖 = 𝑄/𝑁 [%]
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RANSAC termination - How many samples?
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computed for η = 0.95

Inlier ratio 𝜖 = 𝑄/𝑁 [%]
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Eg.: 
• Line: m = 2
• Plane: m = 3
• Sphere: m = 4
• Ellipse: m = 5



RANSAC Notes
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Pros

• extremely popular
• Google Scholar:

• used in many applications 

• percentage of inliers not needed and not 
limited 

• a probabilistic guarantee for the solution

• mild assumptions: sigma is known 

Cons

• slow if inlier ratio low

• It was observed experimentally that 
RANSAC takes several times longer 
than theoretically expected

• due to noise

• not every all-inlier sample 
generates a good hypothesis



RANSAC
case closed? 
NO

29

State-of-the-art 
RANSAC

Cost function for
single data point x



RANSAC Upgrades

• Cost function: MSAC, MLESAC, Huber loss, … 

• Outlier threshold sigma: Least median of Squares, MINPRAN, MAGSAC, … 

• Correctness of the results. Degeneracy. 
Solution: DegenSAC. 

• Accuracy (parameters are estimated from minimal samples). 
Solution: Locally Optimized RANSAC, Graph-Cut RANSAC 

• Speed: Running time grows with 
1. number of data points, 

2. number of iterations (polynomial in the inlier ratio) 
• Addressing the problem: RANSAC with SPRT (WaldSAC), PROSAC 
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Thank You!
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