
Why is my algorithm so slow?
Parallel computing on the GPU
Evolution of GPGPU



Iván Eichhardt
 ivan.eichhardt@sztaki.mta.hu

Course materials
 cg.elte.hu/~gpgpu/opencl

mailto:iffan@caesar.elte.hu
http://cg.elte.hu/~gpgpu


 Introduction to parallel computing

 OpenCL

 Parallel computing with a theoretical
approach





 Is light too slow?!

 Too few trasistors?

 I guess I should optimize my program…



 Think about it..
▪ The speed of light is about 300.000 km/s.

▪ Let’s assume a PC with a CPU at 3,5 GHz…
▪ …and it can add two floating point numbers in 2 clock

cycles

▪ Attach a USB HDD with a cord of 1 meter
▪ …the data we’d like to process is stored on it.

How many additions could be issued while waiting
for the data-to-be-processed to arrive?



 CPU clock speed 3.5Ghz = 3.5*109Hz
▪ A cycle is 1/(3.5*109Hz)=2/7*10-9s ~ 285,7 psec (picosecond).

▪ Two cycle (float addition) takes 4/7*10-9s ~ 571,8 psec time.

 Meanwhile on the cord, the light travels („s=v*t”)
c*4/7*10-9s ~ 3*108m/s * 4/7*10-9s = 12/7*10-1m ~ 0.17m
▪ The cord is 1 m long. That’s 1m/(12/7*10-1m) ~ 6 operations.

 So the CPU was doing nothing in the meantime.

 and there are other slowing factors...
▪ E.g. the typical HDD access time/latency is around 10 msec...

...so the CPU can just go and take a vacation.



 1 ns = 10^-9 seconds

 1 us = 10^-6 seconds 

▪ = 1,000 ns

 1 ms = 10^-3 seconds 

▪ = 1,000 us 

▪ = 1,000,000 ns



 Is light too slow?

▪ Make data travel less!

▪ Move more data in parallel! (32, 64, …)

▪ Use intermediate stores! (e.g. cache)
type latency comments

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory 

reference 100 ns 20x L2 cache, 200x L1 cache

Disk seek 10,000,000 ns



type latency comments

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Read 4K randomly from SSD* 150,000 ns ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Read 1 MB sequentially from SSD* 1,000,000 ns ~1GB/sec SSD, 4X memory

Disk seek 10,000,000 ns 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 80x memory, 20X SSD



 Assume our algorithm is designed
sequentially.

 Independednt steps could be executed in „at
the same time”…

▪ The key is: parallelism.

 But everyhing has its cost.



 Too few transistors?

▪ Parallel architectures!

The assembly line principle: parallel execution of subtasks



 Kevés a tranzisztor?
▪ Párhuzamos architektúrák!

 SISD – Single Instruction Single Data
▪ An instruction is only considered with its data.

 MIMD – Multiple Instruction Multiple Data
▪ Multiple instructions work on various data.

▪ Multiple processors
▪ Multiple threads..

 MISD – Multiple Instruction Single Data
▪ … for robustness.

 SIMD – Single Instruction Multiple Data
▪ The same instruction operated on multiple data.



 Make more transistors fit the same chip area.
 e.g. ~14 nm

 Limits:

▪ At atomic scales: leaking current..
(atomic width ~ 10 – 100 picometer)

▪ The picometre is one thousandth (1/1000 × nm).



 They have undergone great development.

▪ Specialized, non programmable hardware.

▪ …

▪ Programmable hardware for general purpose
computing.



 They have undergone great development.





 GPGPU

▪ General-purpose computing on Graphics 
Processing Units

 For the average user, the most computational
power can be accessed through a GPU.

 Its strength lies in parallelism.



 Simulation of protein folding
▪ Folding@home

▪ H1N1 simulation

 The lost video of Apollo 11
▪ Input: Overwritten video, recording from a monitor 

playing video, partial copies

▪ 100x speedup using GPU

 Training neural networks
▪ Deep Learning, etc.



 FPGA, GPGPU, CPU

▪ Field-programmable gate array (FPGA)

▪ DES decryptin
„Data Encryption Standard”

▪ CPU: 16 million keys / s

▪ GPU: 250 million keys / s (GTX-295)

▪ FPGA: ~1.8 billion keys / s



 H1N1 simultaion
L. Barney - Studying the H1N1 virus using NVIDIA GPUs, Nov 2009.
http://blogs.nvidia.com/ntersect/2009/11/studying-the-h1n1-virus-using-

nvidia-gpus-.html

 Apollo 11
R. Wilson - DSP brings you a high-definition moon walk, Sep 2009.
http://www.edn.com/article/CA6685974.html

 DES decrypting
Dr. Dobbs - Parallel algorithm leads to crypto breakthrough, Jan 2010.
http://www.ddj.com/222600319

 The problems with GPGPU
A. Ghuloum - The problem(s) with GPGPU, Oct 2007.
http://blogs.intel.com/research/2007/10/the_problem_with_gpgpu.php

http://blogs.nvidia.com/ntersect/2009/11/studying-the-h1n1-virus-using-nvidia-gpus-.html
http://www.edn.com/article/CA6685974.html
http://www.ddj.com/222600319
http://blogs.intel.com/research/2007/10/the_problem_with_gpgpu.php




 No synchronization or communication
 Applying a pipeline
 Parallelism

 Basic operations: Map, Amplify, Reduce, Sum





 SIMD
▪ GPU multiprocessor

(e.g. Vertex attirbute streams)

▪ CPU extensions (SSE*, 3DNow!, MMX, …)

▪ Data-centric, easy to parallelize
 Vectorization: the data is organized as vectors

▪ E.g. (vec_res, v1, v2 4×32 bit float vectors):
vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;

▪ You could use a single instruction to perform all above…



 Manhattan distance of 32-bit length binary
strings

 Loop? (Sequential solution)

int bitcount_naive(int x)
{

int count = 0;
while (x != 0) {

if ((x & 1) == 1) { count++; }
x >>= 1;

}
return count;

}



 Manhattan distance of 32-bit length binary
strings

 „Parallel” solution

unsigned int bitcount(unsigned int x)
{

x = (x & (0x55555555)) + ((x >> 1) & (0x55555555));
x = (x & (0x33333333)) + ((x >> 2) & (0x33333333));
x = (x & (0x0f0f0f0f)) + ((x >> 4) & (0x0f0f0f0f));
x = (x & (0x00ff00ff)) + ((x >> 8) & (0x00ff00ff));
x = (x & (0x0000ffff)) + ((x >> 16) & (0x0000ffff));
return x;

}



 Manhattan distance of 128-bit binary strings
 Use SIMD operations!

unsigned int bitcount_128(unsigned int4 x)

{

const unsigned int4 a1(0x55555555, 0x55555555, 0x55555555, 0x55555555);

const unsigned int4 a2(0x33333333, 0x33333333, 0x33333333, 0x33333333);

const unsigned int4 a3(0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f);

const unsigned int4 a4(0x00ff00ff, 0x00ff00ff, 0x00ff00ff, 0x00ff00ff);

const unsigned int4 a5(0x0000ffff, 0x0000ffff, 0x0000ffff, 0x0000ffff);

x = (x & (a1)) + ((x >> 1) & (a1));

x = (x & (a2)) + ((x >> 2) & (a2));

x = (x & (a3)) + ((x >> 4) & (a3));

x = (x & (a4)) + ((x >> 8) & (a4));

x = (x & (a5)) + ((x >> 16) & (a5));

return x.x + x.y + x.z + x.w;

}



GPGPU

 GPU-s
▪ Stream-processing

▪ Compute Shader

▪ CUDA

▪ stb.
 (might be closer

to hardware)

HETEROGENEOUS COMPUTING

 CPU, GPU, FPGA, etc..
 OpenCL standard

▪ Open


