Why is my algorithm so slow?
Parallel computing on the GPU
Evolution of GPGPU

GPU programming

Hi!

lvan Eichhardt

Course materials
fopencl

mailto:iffan@caesar.elte.hu
http://cg.elte.hu/~gpgpu

Introduction to parallel computing

OpenCL

Parallel computing with a theoretical
approach

Why Is my
algorithm so
slow?!

OEC
il

OpenCL

I..‘

Why is my algorithm so slow?

s light too slow?!
Too few trasistors?

| guess | should optimize my program...

Light 1s indeed too slow...

Think about it..

The speed of light is about 300.000 km/s.
Let's assume a PC with a CPU at 3,5 GHz...

= ...and it can add two floating point numbers in 2 clock
cycles

Attach a USB HDD with a cord of 1 meter
= ...the data we'd like to process is stored on it.

How many additions could be issued while waiting
for the data-to-be-processed to arrive?

Light is indeed too slow... (solution)

CPU clock speed 3.5Ghz = 3.5*10°Hz
A cycle is 1/(3.5*10°Hz)=2/7*10"s ~ 285,7 psec (picosecond).
Two cycle (float addition) takes 4/7*10-9s ~ 571,8 psec time.

Meanwhile on the cord, the light travels (,,s=v*t”)
c*4/7*10°%s ~ 3*108m/s * 4/7*103s = 12/7*10'm ~ 0.17m
The cord is 1 m long. That’s 1m/(12/7*10-'m) ~ 6 operations.

So the CPU was doing nothing in the meantime.

and there are other slowing factors...

E.g. the typical HDD access time/latency is around 10 msec...
...s0 the CPU can just go and take a vacation.

Units of time

1 ns = 107-9 seconds

1 us = 107-6 seconds
= 1,000 ns

1 ms = 107-3 seconds
= 1,000 us
= 1,000,000 ns

Some further insights

Is light too slow?
Make data travel

less!

Move more data in parallel! (32, 64, ...)

Use intermediate stores! (e.g. cache)

L1 cache reference
Branch mispredict
L2 cache reference

Mutex lock/unlock
Main memory
reference

Disk seek

0.5 ns
5ns
7 ns

25 ns

100 ns
10,000,000 ns

14x L1 cache

20x L2 cache, 200x L1 cache

Latency comparison ~2012

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk

0.5ns

dns

7ns

25ns

100 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns

14x L1 cache

20x L2 cache, 200x L1 cache

~1GB/sec SSD

~1GB/sec SSD, 4X memory
20x datacenter roundtrip

80x memory, 20X SSD

Too few transistors...

Assume our algorithm is designed
sequentially.

Independednt steps could be executed in ,at
the same time”...

The key is: parallelism.

But everyhing has its cost.

Too few transistors...

Too few transistors?

Parallel architectures!

The assembly line principle: parallel execution of subtasks

R bt e AL U MR e e

L e L RGBT

L REA e U e BB e il 3

F4 =+ D4+ L4 —~ E4 —WB4

Time

Too few transistors...

(approaches)

Keves a tranzisztor?
Parhuzamos architekturak!

SISD —Single Instruction Single Data

An instruction is only considered with its data.
MIMD — Multiple Instruction Multiple Data

Multiple instructions work on various data.
= Multiple processors
= Multiple threads..

MISD - Multinle il
... for robustness.
SIMD - Single Instruction Multiple Data

The same instruction operated on multiple data.

Outlook: miniaturization

Make more transistors fit the same chip area.
e.g. ~14 Nm

Limits:
At atomic scales: leaking current..
(atomic width ~ 10 — 100 picometer)

The picometre is one thousandth (2/1000 x nm).

GPU architectures

They have undergone great development.
AN LG

Programmable hardware for general purpose
computing.

GPU architectures

They have undergone great development.
T 2. A A AU
IS (il

Il
v

.".Il ;| %.

Parallel
computing using
the GPU

SEE
s /A

OpenCL

GPGPU-?

GPGPU

General-purpose computing on Graphics
Processing Units

For the average user, the most computational
power can be accessed through a GPU.

Its strength lies in parallelism.

A few GPGPU usecases

Simulation of protein folding
Folding@home
H1N1 simulation

The lost video of Apollo 12 i
Input: Overwritten video, recording from a memers
playing video, partial copies
100x speedup using GPU

Lowr rted to recov
the lost Apollo 11 video, thanks to
some difficult digital image processing.

Training neural networks
Deep Learning, etc. e SR X

Another comparison

FPGA, GPGPU, CPU

Field-programmable gate array (FPGA)
DES decryptin

»~Data Encryption Standard"

= CPU: 16 million keys /[s

= GPU: 250 million keys [s (GTX-295)

* FPGA: ~1.8 billion keys [s

Sources

HaiN1 simultaion
L. Barney - Studying the HiNz1 virus using NVIDIA GPUs, Nov 2009.

Apollo 11
R. Wilson - DSP brings you a high-definition moon walk, Sep 200g.

DES decrypting
Dr. Dobbs - Parallel algorithm leads to crypto breakthrough, Jan 2010.

The problems with GPGPU
A. Ghuloum - The problem(s) with GPGPU, Oct 2007.

http://blogs.nvidia.com/ntersect/2009/11/studying-the-h1n1-virus-using-nvidia-gpus-.html
http://www.edn.com/article/CA6685974.html
http://www.ddj.com/222600319
http://blogs.intel.com/research/2007/10/the_problem_with_gpgpu.php

Evolution of
GPGPU

Stream-processing

No synchronization or communication
Applying a pipeline

Parallelism
Pipeline
Stream 1 »@ | Stream 2

Compute
Input operator Output
stream stream

Split Merge
operator Stream 3 operator

Basic operations: Map, Amplify, Reduce, Sum

Stream processing in the graphics

pipeline (on the GPU)

IHDUt geumetry
+ attributes

@
@
L] 1T
ek
Stream output
Geometry
Textures
EEEEE
Buffers i
o

Frame buffers

Pixel J

processing

Vector-processing

SIMD

GPU multiprocessor
(e.g. Vertex attirbute streams)

CPU extensions (SSE*, 3DNow!, MMX, ...)

Data-centric, easy to parallelize
Vectorization: the data is organized as vectors

E.g. (vec_res, vi, v2 4x32 bit float vectors):
vec_res.Xx=v1i.X+V22.X

VEC_res.y = Vi.y + V2.y;

Vec_res.z =vi.z + V2.z;

VeC_res.w = Vi.w + V2.Ww;

You could use a single instruction to perform all above...

Vector-processing

Manhattan distance of 32-bit length binary
strings

Loop? (Sequential solution)

int bitcount naive(int x)
{
int count = ©;
while (x != @) {
if ((x & 1) == 1) { count++; }
X (>>=l1

I

return count;

Vector-processing

Manhattan distance of 32-bit length binary

strings

.Parallel” solution

unsigned int bitcount(unsigned int x)

{
(x & (©x55555555))

8
(x & (©x33333333)) +
(x & (oxofefefef)) +
(x & (oxeeffooff)) +
(x & (ox00offff)) +
return X;

X X X X X
= ==

((x
((x
((x
((x
((x

>>
>>
>>
>>
>>

1) & (©x55555555));
2) & (0x33333333));
4) & (Oxofefofof));
8) & (Ox00ffO0ff));
16) & (Ox0000ffff));

Vector-processing

Manhattan distance of 128-bit binary strings
Use SIMD operations!

unsigned int bitcount_128(unsigned int4 x)

{
const unsigned int4 al(@x55555555, ©x55555555, @x55555555, @x55555555);
const unsigned int4 a2(©x33333333, 0x33333333, ©x33333333, 0Ox33333333);
const unsigned int4 a3(@xefefefof, oxefofefef, oxefefofof, oxofefofof);
const unsigned int4 a4(@xeeffeeff, oxeoffeeff, oxeeffoeoff, oxooffeoff);
const unsigned int4 a5(@x0000ffff, Ox0000ffff, Ox0000ffff, Ox0000ffff);

X = (x & (a1)) + ((x >> 1) & (a1));
X = (x & (a2)) + ((x >> 2) & (a2));
X = (x & (a3)) + ((x >> 4) & (a3));
X = (x & (a4)) + ((x >> 8) & (ad));
X = (x & (a5)) + ((x >> 16) & (a5));
return X.X + X.y + X.Z + X.W;

Heterogeneous computing vs GPGPU

GPGPU HETEROGENEOUS COMPUTING
GPU-s CPU, GPU, FPGA, etc..
Stream-processing OpenCL standard
Compute Shader Open
CUDA
stb.

CPUs GPUs

(m | g ht be C | OSer .. Multiple cores driving Emorging Increasingly general
performance increases Intersection purpose data-parallel

to hardware) 4 computing
QE”
o e
. OpenCL ‘
Multi- \Mﬂm Graphics
processor \,\ Computing APIs and
programming | Shading

- e.g. OpenMP b Languages

