Parallel design patterns

GPU programming

‘Reduce |

N

A

0

Al Map T -
inputy: (T T T
input, [T T l—

kOUtpUtI:I:-:I:I) output:[T Tl T']

Parallel design
patterns

e

Outline

Case studies on parallel design patterns
Map
(Gather)
(Scatter)
Stencil
Reduce
Scan

Parallel computing —

Important design patterns

4 M 1
Map f Stencil I
nput-: |
nput,:[| 1 | input:
|npUtk:| I I I I
output: [T I output:
Q 7 Q

] I

Scan

%IGQII
T

. J

PP design pattern: Map

fl Map M
inputy:[] |_| |
input,:[T B |

\loutput:[T I T

PP design pattern: Map

Application of a multivariate function.
One-to-One mapping

Typically combined with different patterns.
New patterns arise.

About implementation
Could be carried in-place (on the input). I

(Gather and Scatter)

(PP design pattern: Gather)

(PP design pattern: Gather)

Gather: Process , P” collects data from
multiple locations and has a single unit
of output.

(PP design pattern: Scatter)

(PP design pattern: Scatter)

Scatter: Process ,P” touches
multiple output elements given a
unit of input data.

PP design pattern: Stencil (1)

Stencil
input: []

output:[T M]
b &

PP design pattern: Stencil (1)

Overview
N input elements, N output elements.

Output is calculated based on some context of the element being
processed.

alf DA A 1 D

Applications
E.g.: Running filter (in-place)
E.g.: Blurring (not in-place)
= Box filter, Gaussian filter, ...

Techniques

Convolution, Median, Finite differences,
Bilateral filtering, etc

Stencil R

Implementation input:[IR]
Convolution: Separable? => Speedup!
P ket loutput: [T 1)

PP design pattern: Stencil

Important aspects:

Stencil has a fixed pattern of input data
Stencil touches each output element.

(2)

dCCess.

Problem of its naive implementation:

Data reuse. ®
* Q: Asolution? E.q. for runing mean?

Task:

* Q: How many times wouls stencil access the
the same data?

Stencil

input:|

\\

output: [T T T1
& g

Q: Based on what design pattern the
following can work ...

Summation?
Conditional assignment?
Sorting?

Overview

Map:

Index space €2
(Input, Output)

,0One-to-One”

Gather:

Index space € -2 Output
~Many-to-One”

Scatter:

Index space € -2 Input
,One-to-Many”

Stencil:

Index space €2
(Input*, Output)

,Several-to-One”

Complex PP design patterns

~

i T -
Reduce Scan
I

-l e

I (== _s]

J

PP design pattern: Reduce (1)

PP design pattern: Reduce (1)

~"Compression”

Given an operation: @
= Associative.

= Commutative?
Given Input where the operation can be used.

The input is reduced using the operation:
= E.g.: Sum (operation: +)

= E.g.: Selection of maximum 'Reduce

Ry
]

PP design pattern: Reduce (2)

Applications

Summation, Maximum-selection ...

Only-Associative case: A stage of the Scan
design pattern! (,Up-Sweep”)

Reduce

Ry
]

PP design pattern: Reduce (3)

Implementation
In-place, or using ,alternated” Input-Output
arrays.
Synchronization is needed for efficiency.

Regarding the properties of the operation:

= Associative: Base-case.

« Commutative: Efficient memory and cache usage GRéduce
other benefits. Con: order of data changes. N A

PP design pattern: Reduce (4)

Assoclative case

Values:
Step 4/
lw@@@@@@@@
Values:
Step /
Values: 5 2
Step
3 ,get_id” @4/ @4/
Values: 2|8 |5 Faliiaiie
Step / Reduce

4 »get id @F

Wk D et 5 P A EE TSI T == 0 e st e et e,

PP design pattern: Reduce (5)

Commutative case

Values: 10| 1 8 | -1 THEHRE e SRS RSN L 7 DR Iy

i s /

el CTTTEEE @

Values: 8 | -

Step -
2 T

»get id”

Values: 8 | 7 (13

Step
3 »get id” @ 0

Values: 2l e i e s et e e e R 11*“«.
Step

4 »get_id @4/

Values: 4112013 (13| O 9 3 7 | 2| -3]| 2 7 0O |1M| 0 ‘ 2|

PP design pattern: Scan (1)

PP design pattern: Scan (1)

Given operation: @
Associative.

The partial results are also computed.

Comparison: What ,Reduce” is all about is the end result.
But!

((Scan |

By
]

PP design pattern: Scan (2)

Applications

A step of Radix sort.
Variable width image filtering.
Stream processing.

Read:

Blelloch, Guy E. 1990. "Prefix Sums and Their Applications." Technical
Report CMU-CS-90-190, School of Computer Science, Carnegie Mellon

University.

Vs

Scan

By

]

™

http://people.inf.elte.hu/hz/parh/parhprg.html

PP design pattern: Scan (3)

Implementation
Naive: not ,work-efficient”: O(n log, n)

Efficient:

= balanced trees
Really useful patterin in PP!!!
Here, binary tree.

Work-efficiency: O(n).
The binary tree is not stored, only the principle is used!

= Two Steps: | \
,Up-Sweep” (Reduce pattern) Scan
~Down-Sweep” Ul
. /
= Read: Belloch (1990)

PP design pattern: Scan (4.1)

Naive approach- O(n log(n))

Values:

Step
1l

Values:

»get id”

Values:

»get id”

?3%%11:%15

BEREY
1

610?55%2%?%

PP design pattern: Scan (4.1)

Naive approach- O(n log(n))

Values:
Step i
1 »get id
Values:
Step
i .
»get id”
Values:
Step
3
»get id”
Values:

2 3 4 5 6 7 8

11..21 | 12..31 | 13..41 | (4..51 | [5..6] [§.>7] [7%2]

[1..2] | [1..3] | [1.4] | [2.5] | [3..6] | [4..7] | [5..8]
Wil J 49
el

[1.2] | (1..31 | [1..41 | (1..5] | [1..6] | [1..71 | [1..8]

PP design pattern: Scan (4.1)

Naive approach- O(n log(n))

Values:
Step i
1 »get id
Values:
Step
i .
»get id”
Values:
Step
3
»get id”
Values:

2 3 4 Sl 7 8
[1.2] | [2..3] | [3..4] | [4..5] | [5..6] [?}[’ﬁ]

[2..5]

[3..6]

[4-7]

O

[1..2]

[1..3]

[1..4]

[1..5]

[1..6]

[1..7]

[1..8]

PP design pattern: Scan (4.2)

Efficient — O(n)

Two steps:
Up-Sweep
Down-Sweep

Up-Sweep

Associative! ,Reduce”.

Down-Sweep
Look at the next slides!

PP design pattern: Scan (4.1)

Naive approach- O(n log(n))

Values:
Step i
1 »get id
Values:
Step
i .
»get id”
Values:
Step
3
»get id”
Values:

2 3 4 Sl 7 8
[1.2] | [2..3] | [3..4] | [4..5] | [5..6] [§.>7] [7..8]

[2..5]

[3..6]

[4-7]

O

[1..2]

[1..3]

[1..4]

[1..5]

[1..6]

[1..7]

[1..8]

PP design pattern: Scan (4.1)

Work-efficiency— Down-sweep

Values:
Step i
1 »get id
Values:
Step
i .
»get id”
Values:
Step
3
»get id”
Values:

[1..2] [3..4] [5..6] [7..8]
w |
[1..2] [1.4] [5..6] [5..8]
[1..2] [1..4] [5..6] [1..8]

PP design pattern: Scan (4.1)

Work-efficiency— Down-sweep

Values:
Step i
1 »get id
Values:
Step
i .
»get id”
Values:
Step
3
»get id”
Values:

[1..2] [3..4] [5..6] [7..8]
w |
[1..2] [1.4] [5..6] [5..8]
[1..2] [1..4] [5..6] [1..8]

PP design pattern: Scan (4.1)

Work-efficiency-,,Up”-sweep

Values:
Step
1
»get id”
Values:
Step
2 »get id”
Values:

pattian it it nstEg e e
M1.2]1| 3 |(.41| 5 |(.61| 7 |[1.8]
[1.2] | [1..3]1 | [1..4]1 | [1..5] | [1..6] | [1..7] | [1..8]

