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Camera Models and Calibration
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e Summary
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Camera Models Perspective (pin-hole) camera
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Camera Models Perspective (pin-hole) camera

Gemoetric Imaging Models

@ We introduce different geometric models
e General perspective camera
e Simplified camera models

@ Perspective camera model equivalent to pin-hole camera.
@ camera obscura

@ Pin-hole camera is close to real optics

— simple model of a thin optics
— Physical models are significantly complicated.

@ However, a perspective camera is a very good geometric
approximation.

@ We address separately the following issues:

e radiometric properties (brightness, colors)
@ geometric distortions
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Camera Models Perspective (pin-hole) camera

Perspective camera model
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Camera Models Perspective (pin-hole) camera

Notations: coordinates and transformations

@ Coordinates

X=[X,v,2Z]T world
Xe = [Xe, Yo, Z]T camera
u=[uv]" image plane

@ Homogeneous coordinates

X=[X,Y,Z1]" world
Xe = [Xe, Yo, Zo,1]T camera
u=I[uv,1]" image plane

@ Transformations

e R: rotation (matrix)
e t: translation (vector)
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Camera Models Perspective (pin-hole) camera

Notations: camera

C ¢ f uo = [uo, vo]"
focal point image plane focal length principal point

@ C focal point: central projection
@ Optical ray: it connects a 3D point and focal point C

@ Optical axis: Contains the focal point C and perpendicular to
image plane ¢
@ Focal length: distance between C and ¢.

@ Principal point: the point in image plane where optical axis
intersects ¢
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Camera Models Perspective (pin-hole) camera

Perspective camera model
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Camera Models Perspective (pin-hole) camera

Translation and rotation

@ World — Camera
@ Euclidean coordinates

X = R(X —1)

@ Homogeneous coordinates
X
Xc = Rl — 1] [1]

e |lis a 3 x 3- identity matrix
o [l —t]is a3 x 4 -matrix
— | completed by colums —t
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Camera Models Perspective (pin-hole) camera

Projection to an image plane

image plane

Xc fky
************************************ : u= ZXC + U
,,,,,,,,,,, vV = & YC + VO

Zc Ze

focal point

f

@ ky, ky is the horizontal/vertical pixel size.
— their unit is pixel/length.
@ Usually, k, = k, = k.
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Camera Models Perspective (pin-hole) camera

Projection using homogeneous coordinates

u
v| ~ KXo (5)
1

@ ~ homogeneous division yields scale ambiguity

@ K is the (intrinsic) calibration matrix

fky 0w
K=1|0 fk, v (6)
0 0 1

@ upper triangular matrix
e consists of 5 parameters, but only four are realistic
- kaa ka» Uo, Vo
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Camera Models Perspective (pin-hole) camera

Multi-view projection of a spatial point

@ Locations of the same spatial point differ in images.
@ Locations should be detected and/or tracked in the images.
— They are called correspondences.
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Camera Models Perspective (pin-hole) camera

Perspective camera model

@ Goal: to determine the location of the projected 3D points in
camera images.

? ~ KRl —1] m =P m (7)

@ P =KR[l| —t] is the projection matrix

e consists of 11 parameters
— 5in K, 3in R, another 3 in t.
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Camera Models Weak-perspective camera
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Camera Models Weak-perspective camera

Weak-perspective projection 1/2

@ Itis assumed that the object is not 'too close’ from the camera

e change in depth is significantly smaller than the camera-object
distance

@ Object plane is parallel to the image plane
e itis ideal if object center contains the center of gravity of the object.

@ Objects are orthogonally projected into the object plane

@ Then perspective projection is applied

e as there is no difference in depth, location of principal point does
not matter.
— for the sake of simplicity, up = vo = 0.
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Camera Models Weak-perspective camera

Weak-perspective projection 2/2

object plane fk
' u==Xc+U (8)

(o

fk

image plane

Xec

focal point

Z

f

@ If pixel is a square, k, = k, = k
@ ltis also assumed that Z; > A
— Lo~ Z;, where Z; is the common depth

— scaled orthographic projection
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Camera Models Weak-perspective camera

Weak-perspective camera model 1/2

@ Translation and rotation in conjunction with weak-perspective

projection:
u=qrl(X—1t)+up (10)
v=grl(X—t)+ v, where (11)
g= X
Z

@ r] and r] are the first and second row vectors of rotation matrix R.

@ ug represents offset: — vy =vp =0

u=qri(X—t) (12)
v=gri(X—1t) (13)
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Camera Models Weak-perspective camera

Weak-perspective camera model 2/2

@ Projection can be written with the help of a weak-perspective
camera matrix:

[5] = [M|b] [ﬂ ,  Wwhere (14)
M= r b qrit
r aqrit

@ Model has 6 degree of freedom (DoF)
o if k, # k,, DOF=7

@ There is no scale ambiguity.
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Camera Models Weak-perspective camera

orthographic projection

image plane

@ Orthogonal projection can be applied if object
e is far from the camera
o depth is relatively static

@ Model has 5 degree of freedom (DoF)
e Ry, b
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Camera Models Comparison of camera models
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Camera Models Comparison of camera models

Affine camera

@ General affine camera
u= M2><3X +t

e 8 degrees of freedom
o My, 3is a2 x 3matrix with rank two

@ Hierarchy of affine cameras
e general affine camera

I

@ more constraints,
o less DoFs
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Camera Models Comparison of camera models

Herarchy of affine camera models

@ Weak-perspective projection
e 7 degrees of freedom (k, # k)

@ Scaled orthographic projection

@ six degrees of freedom
e orthogonal projection + isotropic scale
— if ky = ky, it is a scaled orthographic projection

@ Orthogonal projection
o five degrees of freedom
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Camera Models Comparison of camera models

Perspective projection

image plane

Xec

focal point
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Camera Models Comparison of camera models

Weak-perspective projection

X image plane object plane

DE—

focal point
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Camera Models Comparison of camera models

Applicability of weak-perspective projection

@ Projection error of weak-perspective projection

Ao

C

weak proj __
Xc - Xz =

— with respect to real location
e A: distance betwen point and object plane
e Z. mean of depth values

— Weak-perspective projection applicable if
0 A K 20
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Benefits & disadvantages of weak-persective
projection

@ Advantages over real perspective projection
@ no scale ambiguity
o less parameters to be estimated
— accuracy of estimation can be better
e simpler
— closed-form solutions exist for several problems

@ Disadvantages
e Itis only an approximation of real projection
— less accurate if conditions do not hold
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Comparison of the projection models

close view distant view

perspective @ ﬂ
= il
perspective

effect perspective  weak-persp.  orthogonal
change in sizes yes yes no
persp. distortion yes no no
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Camera Models Back-projection to 3D space
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Camera Models Back-projection to 3D space

Back-projection of a point 1/2

@ Projection

u= @XCJr Ug

C
ftky
Z

YC + VQ

@ Back projection by expressing spatial coordinates:

Xe %(U Up)
Ye %(V — V)
Zc = Zc
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Camera Models Back-projection to 3D space

Back-projection of a point 2/2

@ Matrix form

X; e 0 | |u u
Yel| = Z:| 0 %V —f‘,% 4 :ZCK_1 4 (15)
Zc 0 O 1 1

@ where the calibration matrix is as follows:

tku 0 W
K=10 1k, w
0o 0 1

@ a 3D point is ambiguous w.r.t. depth
— a point in image represents a line in 3D space
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Camera Models Back-projection to 3D space

Back projection by homogeneous coordinates

@ Projection of 3D point to an image plane:
u=PX
@ Back-projection yields a line:
X(A\)=(1-NPTu+2)C

e ltis aline written by a parameter A

@ PT is the pseudo-inverse of P
o PPt =1 (I : identity matrix)
o Pt =PT(PPT)"
@ The line contains
e point PTu (A =0)
e Focal point C of camera
@ C is the null-vector of matrix P
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Camera Models Back-projection to 3D space

Back projection and triangulation

@ To estimate a 3D points
o at least two calibrated cameras
e and two corresponding points in the images are required.
@ Estimation of 3D coordinates is called triangulation in computer
vision.
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Outline

e Homography
@ Homography estimation
@ Non-linear estimation by minimizing geometric error
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Homography

@ General, (n+ 1)-dimension case
e P": n-dimensional space
e R extended space of P”
e transformation P” — P9 is a homography, it is a linear
transformation R("+1)
e It is applied using homogeneous coordinates:

u’ ~ Hu
— His anon-singular (n+ 1) x (n+ 1) matrix

@ 3Dcase:n+1=3
e P?isaplanein R®
e A homography is a projective transormation between two planes
— it is unequivocal
e Lines remain lines after homographic transformation.
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Homography

Special cases of a homography

projective affine similarity metric identity
Y Y Y Y Y
’0 X ’0 X Euﬁ X /\’qi/ X 0 X
At SR —Rt R —Rt]
detH #0 = H= = H=E
sth# 0T 1} 0T o 1
detA#0 RTR=E R'TR=E
detR =1 detR =1
s>0
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Plane-plane homography (1)

@ A planar pattern is given in 3D space.
@ Two different images are taken:
u= >\ P1X u = )\2P2X

@ Origin and oriantation of coordinate system can be freely selected

o Let plane Z = 0 be the plane of the pattern
e Then an arbitrary point within the pattern is X; = [X;, ¥;,0, 1]".

@ Projection is more simple:

@ where X; = [X;, Y;,1]7. Matrices P; and P, is the original P; and
P> matrices, removing the third column.
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Application of homography (1)

@ P; and P, are 3 x 3 square matrices
e They are invertible.

@ Spatial points:

o Transformation is given by the 3 x 3 matrix 42P,P; .
— This is a homography.
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Homography

Application of homography (1) : transformation of
planar patterns
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Homography

Application of homography (1/b) : Inverse Perspective
Mapping

@ For vision system of autonomous vehicles, the road is one of the
main focuses of attention.

e The road is a planar surface.
— It can be rectified by a homography.

@ Objects can be more accurately detected in rectified images.
e The distances can also be measured and visualized.
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Homography

Application of homography (1/b) : Inverse Perspective
Mapping

Left: Original image. Right: Rectified image.
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Application of homography (2)

@ A 3D world is given, two images are taken from the same focal
point. Only camera orientations differ.

— Input for a panoramic image.
@ The origin is selected as the common focal points of the images.
@ Camera projection matrices: Py = K{[R1|0] and P> = K;[Rz|0]

@ Projection: u = K[R|0][X, Y, Z,1]”. Homogeneous (last)
coordinate does not effect result.

@ Transformation between two corresponding image locations:
u = K2R2R1 TK1_1U

@ Transformation is represented by 3 x 3 matrix KoR2 R Tk, 1.
— This is a homography as well.
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Homography

Application of homography (2) : panoramic imaging
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Point-correspondence-based homography estimation

e
2 2
3 A
o | 3
4% ? 24

@ m point correspondences are given. u; — u’:
uj~Hu;, i=1,...,m

@ Task: estimate H

e atleast m = n+ 2 correspondences are required
@ planar homography: at least four points needed.

e For more points, problem is over-determined.

@ In case of outliers: robust estimation
e Robustification requires more corresponences.
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Homography written by point locations

u hi11 hi2 h3| |u
a |V = |hy haa hog| |V],
1 h3y hso hsz] |1

where « # 0 is an unknown scale factor.
Transformation yields

J— hi1u+ hiav+hiz  hlu
h31u+ hgov + hsz hlu’
_ h2ruthopvi+ hps hJu
hs1u+ hgov + hsg hlu’

where h; is the i-th row of matrix H .

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 46/85



Linear estimation of planar homography 1/2
Equations are multiplied by the common denominator

(h31U+h32V+h33)UI:h11U+h12V+h13 (18)
(hs1u + haav + hag)V' = hoyu + hoov + hog (19)

For the i-th point, two homogeneous equations are obtained as
A/h =0, where

uy vi 1.0 0 0 —uu —viu, —u (20)
0 0 0 v vi 1 —uv; —vivj —vj|’

h = [hy1, hi2, s, Moy, Moo, Bps, hat, haa, has]" (21)

A=

For all points, Ah = 0 linear system of equations should be solved,
where
A=A, Ao, ... Ag]"
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Linear estimation of planar homography 2/2

@ Trivial solution h = 0 is discarded

e h can be determined up to a scale
— the norm is fixed: ||h|| =1

o If there are m = 4 correspondences; or m > 4, but data are
noisy-free
e if rank of A equals 8, exact solution can be obtained.

@ If m > 4 and data are contaminated
e only an estimate can be computed,
e by minimizing ||Ah||, subject to ||h|| = 1.
— Optimal solution in the least squares sense is the eigenvalue of
AT A corresponding to the smallest eigenvalue.
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Properties of linear estimation 1/2

@ Linear method
— unequivocal, clear solution

@ Low computational demand
— fast execution

@ The cost function of the estimation is determined by ¢
€ = [|An]

@ ¢-is an algebraic distance

e no direct geometric meaning
— minimization of geometric distance(s) preferred
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Properties of linear estimation 2/2

@ Not robust

@ noisy correspondences

o Works well if there are no outliers
— one outlier can destroy the good result
— (breakdown point) is very low

@ Due to numerical computation, data normalization required

e elements in coefficient should be in the same order of magnitude
— translation: origo should be at the center of gravity
— scale: spread should be set to v2

@ Numerical optimization is usually applied, linear method yields
initial value
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Data normalization

@ Coordinate system can be freely selected.
@ Original homography: [uz, vo, 117 ~ H[uy, v4, 1]
e Modified coordinates: [u'y,v'1,1]" = Tq[uy, v4,1]" and
(U2, V2, 1]" = Talth, v, 1]7
@ where Ty and T, are affine transformations (translation + scale)

@ Projection by the modified homography:

[U/27 V/27 1]T ~ H,[U/'Ia V/17 1]T
@ After substitution: Ta[up, va,1]7 ~ H'Tq[uy, vy, 1]7
@ Then: (multiplication by T51 from the left):

[Up, vo, 1]T ~ T, "H'T4[ug, vy, 1]7
@ Thus,H =T, H'T; or H' = ToHT; ":
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Homography Non-linear estimation by minimizing geometric error
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Homography Non-linear estimation by minimizing geometric error

Minimization of projection error

H
Y I
d d’
H u’
image 1 image 2
@ Projection error
>~ [d(uj, Huy)?

i
@ Symmetric projection error
2
> ([d(u;, Huy))? + [d(u,, H—1u;.)] )
i
@ Refinement of homography H: 9 variables, 8 DoFs
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Homography Non-linear estimation by minimizing geometric error

Minimization of reprojection error

u u’
Ve d
u H w’
g
image 1 image 2

@ If both H and u; are refined: 9 + 2m variable
@ Homography H and points {;, U should be refined by minimizing
the re-projection error

3 ([d(u,, a;)]? + [a(u), a;)]z) subject to @) = H{; Vi

1

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 54/85



Homography Non-linear estimation by minimizing geometric error

Non-linear estimation of a homography

@ Cost function is non-convex

— Global minimum cannot be guaranteed
— Good initilal value required

@ Two-step approach

@ Linear estimation first,
@ then numerical optimization, e.g. Levenberg-Marquardt applied

@ For outlier handling, robustification is required

e oultlier filtering, robust statistics
@ RANSAC, M-estimation, median, ...
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Homography Non-linear estimation by minimizing geometric error

Properties of non-linear estimation

@ Benefits

e Geometric error (meaningful) can be applied
e Accurate
e Can be straightforwardly robustified

@ Disadvantages

e Numerical methods — local minima can exist
— Results depend on initial values
e Higher time demand
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Outline
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Camera Calibration

Goals of Camera calibration 1/2

@ Camera calibration is an important pre-step of 3D reconstruction

e Estimation of intrinsic parameters
e Extrinsic parameters (position, orientation)

@ Two main types of calibration

e Photogrammetric calibration, separate process
o Auto-calibration: joint estimation of camera parameters + 3D
scenes
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Camera Calibration

Goals of Camera calibration 2/2

@ Better camera parameters — better 3D vision

e Stereo (two-view) calibration is possible if cameras are
pre-calibrated

@ Calibration requires known positions of

e Feature points and
e Lines

@ Auto-calibration
@ More difficult
o Less accurate
o Applied if pre-calibration is impossible
— This course does not deal with auto-calibration.
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Camera Calibration

Camera calibration with calibration object

@ Know 3D scene required

e partally or fully known geometry
o detectable features on the images
e manual intervention can be applied

@ Partially-known geometry

e parallel lines
e perpendicular edges
— e.g. a building

@ Known objects

e static 3D point cloud
— e.g. calibration cube
— or calibration chessboard
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Camera Calibration Calibration by a spatial object
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Camera Calibration Calibration by a spatial object

Calibration by a spatial object

@ Given m point correspondence between 3D scene and images
plane X; — uj:u; ~ PX;, i=1,....m
@ Task: estimation of P = KR [l| — {].

o At least 6 correspondences required
e Over-determined system

@ Wrong correspondence —; robust methods
e Many correspondences — outlier detection
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Calibration by Cartesian coordinates

u P11 P12 Pz Pig
a|v| =[Py Px P Py
1 P3y Psx Psz Pay

~ N < X

where « # 0 is an arbitrary scale factor.
Equations can be rewritten as
_ PuX+PiY +PigZ+ Py p{X

o P31X+ P32Y+ P332+ P34 a p:,TX’

y— PoaX+ PooY + PosZ + Pog pJ X
a P31X—|- P32Y+ P33Z—|— P34 ng’

where p; is the i-th row of projection matrix P.
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Camera Calibration Calibration by a spatial object

Linear estimation of a projection matrix 1/2
Equations are multiplied by the common denominator:

(P31 X + P32Y + P33Z + Pag)u = P11 X + Pr2Y + P13Z + Py
(P31 X + P32 + P33 Z + P3a)v = Poy X + Pop Y + PogZ + Pog

For the i-th point, Ajp = 0, where

XY 4 0 0 0 0 —uXi —uY, —uZ

1
A=10 0 00X Y Z 1 —vX —vY -z

P = [Pi1, P12, P13, Pia, Pa1, P, Pas, Pas, Pay, Pap, Pag, Pas]"

(24)
(25)

For all the points, a homogeneous linear system of equation obtained

in the form Ap = 0 where
A=A, As, ... Am]"
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Camera Calibration Calibration by a spatial object

Linear estimation of a projection matrix 2/2

@ p = 0 trivial solution omitted.

e estimation obtained up to a scale
— norm is fixed as ||p|| = 1

@ For noiseless case
e rank of A is 11, perfect solution is obtained

@ For over-determined and noisy case,
e only estimation can be computed
e minimization of ||Ap|| subject to: ||p|| = 1.
— optimal solution if the eigenvector of AT A corresponding to the least
eigenvalue.
e solution can be obtained by Singular Value Decomposition (SVD)
as well.
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Camera Calibration Calibration by a spatial object

Decomposition of a projection matrix

@ Structure of a projection matrix:
P=KR]Jl| -t (28)

@ First three columns of matrix P : P33 = KR

e Decomposition can be obtained by RQ - decomposition
e It decomposes P into product of an upper triangular and an
othonormal matrices

@ Last column of matrix P:
ps = —KRt (29)
@ Thus,

t=—-R'K 'p, (30)
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Camera Calibration Calibration by a spatial object

Data normalization

@ Point coordinates can be normalized similarly to homography
estimation
@ Original transformation: [u,v,1]" ~ P[X, Y, Z,1]T
@ Normalizing transformations: [/, v/, 1]T = Top[u, v, 1]” and
(X', Y, Z' 1]T =Tap[X,Y,Z,1]"
e T,op 2D transformation(s) (size: 3 x 3)
e Tj3p 3D transformation(s) (size: 4 x 4)

@ Projection by normalized coordinates:
[, v AT ~P[X, Y, Z 1]
@ Solution applied normalized coordinates:
o P=T,,P'Tspor P’ = TopPT;,.
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Camera Calibration Calibration using a chessboard
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Camera Calibration Calibration using a chessboard

Chessboard-based camera calibration

Z. Zhang, Microsoft Research, 1998.

Easy and accurate method
Frequently-used

Non-perspective distorsion can be handled

Chessboard can be easily printed

Efficient implementations available, e.g. in OpenCV

@ See demos on Youtube

@ Disadvantages

e Multiple images required
e Avoid checked patterns on shirts :(
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Camera Calibration Calibration using a chessboard

Box-based camera calibration

R.Y. Tsai, 1986.

Non-perspective distorsion can be handled

Less user-friendly than chessboard-based one
— not frequently used

Hard to manufacture a precize calibration box

e especially in large dimensions
— itis difficult to calibrate a camera using a small cube

Benefits
o One static image is satisfactory
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Camera Calibration Calibration using a chessboard

Calibration of a camera-system using chessboards

5

Detected corners Chessboard Extrinsic camera params

@ Chessboard patterns are assymetric —> corner detection
unambiguous.

@ Orientations of chessboard in images should differ.
@ Extrinsic parameters can also be retrieved.
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Camera Calibration Calibration using a chessboard

Chessboard-based calibration

@ Main steps of calibration

@ Homography exists between the calibration plane and an image
@ Camera intrinsics in matrix K can be computed from homographies

@ World coordinate is fixed to the board
e Axis Z is perpendicular to the board — Z = 0 is the board plane

U X X
a {v] =K[rn r tj|Y|=H|Y|, where (31)
1 1 1

@ ry and r, are the first two rows of rotation R
e H=K [I’1 ro t]

@ Task is to (1) estimate H, then (2) computate intrinsic matrix K
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Camera Calibration Calibration using a chessboard

Chessboard-based calibration

@ Corners of chessboard fields can be easily detected.

e chessboard -> image correspondences X; — u; used
e at least 4 required

— More correspondences needed for contaminated data
e subpixel corner detection — improved accuracy

— intersections of lines

@ Estimation of homography H

e linear estimation minimizing algebraic error
e non-linear estimation considering geometric error

@ Homography H can be estimated up to an unknown scale

@ Let hy, hy, hs denote the columns of H: H = [hy  hy hg]
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Calibration using a chessboard
Computation of intrinsic parameters 1/3
@ For homography matrix, the following equations are valid:
[h1 h2 h3] ~ K [r1 ro t]
[h1 hg] ~ K [I’1 rg]
K- [h1 hg] ~ [r1 rg]

@ ry and r, are orthonormal, therefore

rir, = hiShy, =0, (32)
Ir1]/ = |Ir2||”> = hiShy — hiSh, =0, (33)

e where S = K- TK-", K-T = (KT
@ This is a linear problem w.r.t. the elements of S. — They can be
optimally estimated.
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Camera Calibration Calibration using a chessboard

Computation of intrinsic parameters 2/3

@ Elements of calibration matrix K:

K=1[0 ftk, v
0O 0 1
@ S=)K 'K
1 s ugfky—VvpS
(fhku)? ~ (fku )2ty (fky )2ty
s s 1 —S(Upfkv—%S) Vo
N | TR KPR T (e 2(7,)2 + 7
ugfky—vos  —S(Upfkv—VpS) 4+ % 1+ Vo + (ugfky—vs)?
(fka)2 Tk, (T )2 (Thy)2 (kv )2 w2 T (thky)2 (ko )2

@ Matrix S has 5 parameters to be estimated: tk,, fky,, Ug, Vo, S

@ Each chessboard image yields 2 equations — at least 3 images
required

@ More images — overdetermined system
@ Robustification also requires many images
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Camera Calibration Calibration using a chessboard

Computation of intrinsic parameters 3/3

@ Matrix 8 — closed-form solution for intrinsic parameters(K)

(S11S23—S21S13)
S11522-55,

82, +v(S12513—511S23)
)\ = 333 — 13 811

fku — ‘/SLH
fky = \/AS11/(311322 — 8%,)

s= —Syofk2fky /A
up=  svp/fky — Syatk,?/A

Vo =

@ Check: homework...
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Camera Calibration Calibration using a chessboard

Computation of extrinsic parameters

ri rn t|=K'H (34)
3 =ry XI»o (35)

@ For detailed description: Z. Zhang, Technical Report

@ Implementation available in OpenCV, C++
@ Matlab toolbox also exists
@ http://sourceforge.net/projects/opencvlibrary/
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Camera Calibration Radial distortion

Outline

0 Camera Models

e Homography

e Camera Calibration

@ Radial distortion
e Summary
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Camera Calibration Radial distortion

Radial distortion

@ Non-perspective distorton is common for cheap or wide FoV (field
of view) lenses

@ Perspective model is only an approximation for real projection

e e.g. projection of a line should be a straight line due to perspectivity
— This is not always true for real cameras

@ Usually, type of distortion is radial distortion

e Two subtypes: Barrel/pillow distortion
— barellel is more frequent

@ Radial distortion has to be undistorted
e Especially, when accurate 3D reconstruction should be achieved.

@ Undistortion is usual part of camera calibration

e ltis included e.g. in OpenCV'’s calibration, in final numerical
optimization
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Camera Calibration Radial distortion

Radial distortion

barrell

@ Straight lines become curves
@ ltis usual for wide FoV (small focal length)

Source of images: Wikipedia

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 80/85



Camera Calibration Radial distortion

Correction of radial distortion

a=uc+L(r)(u—ug), ahol (36)

@ u: measured, (: corrected coordinates
@ u. center of distortion
e itis usually assumed that u, coincides with principal point up.

@ L(r) is a cubic polynomial in r?
L(r) =1+ kyr? + kpr* + war®
e r = |lu—ucl is the distance from uc.
e L(r)is a Taylor approximation of the real distortion function

— K1, ko, k3 are small real numbers

@ Model is built in the non-linear homography estimation
— Parameters k1, ko, k3 are stimated based on 2D geometric error
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Camera Calibration Radial distortion

OpenCV: tangential distortion

X=yc+ Li(x,¥)(x — Xc)
V=Ye+ La(x,y)(y — ye)

@ L 21(x,y) are products of polynomials
Li(x,y) = 1+ 2p1xy + p2 (12 +2x2)
Lo(x,y) =1+ 2p2xy + p (r2 + 2y2)

e r = x? 4 y? is the distance from the optical axis

@ p1, po are small real numbers

e Itis not mandatory to use all tangential parameters.

e Tangential distortion does complete and not substitutes radial
distortion.
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Outline

0 Summary
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Camera models and Calibration

0 Camera Models
@ Perspective (pin-hole) camera
@ Weak-perspective camera
@ Comparison of camera models
@ Back-projection to 3D space

e Homography
@ Homography estimation
@ Non-linear estimation by minimizing geometric error

e Camera Calibration
@ Calibration by a spatial object
@ Calibration using a chessboard
@ Radial distortion

e Summary
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