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Camera Models Perspective (pin-hole) camera

Gemoetric Imaging Models

We introduce different geometric models
General perspective camera
Simplified camera models

Perspective camera model equivalent to pin-hole camera.
camera obscura

Pin-hole camera is close to real optics
→ simple model of a thin optics
→ Physical models are significantly complicated.

However, a perspective camera is a very good geometric
approximation.
We address separately the following issues:

radiometric properties (brightness, colors)
geometric distortions
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Camera Models Perspective (pin-hole) camera
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Camera Models Perspective (pin-hole) camera

Notations: coordinates and transformations

Coordinates

X = [X ,Y ,Z ]T world

Xc = [Xc ,Yc ,Zc]T camera

u = [u, v ]T image plane

Homogeneous coordinates

X = [X ,Y ,Z ,1]T world

Xc = [Xc ,Yc ,Zc ,1]T camera

u = [u, v ,1]T image plane

Transformations
R: rotation (matrix)
t: translation (vector)
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Camera Models Perspective (pin-hole) camera

Notations: camera

C φ f u0 = [u0, v0]T

focal point image plane focal length principal point

C focal point: central projection
Optical ray: it connects a 3D point and focal point C
Optical axis: Contains the focal point C and perpendicular to
image plane φ
Focal length: distance between C and φ.
Principal point: the point in image plane where optical axis
intersects φ
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Camera Models Perspective (pin-hole) camera
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Camera Models Perspective (pin-hole) camera

Translation and rotation

World −→ Camera
Euclidean coordinates

Xc = R(X− t) (1)

Homogeneous coordinates

Xc = R [I| − t]
[
X
1

]
(2)

I is a 3× 3- identity matrix
[I| − t] is a 3× 4 -matrix

→ I completed by colums −t
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Camera Models Perspective (pin-hole) camera

Projection to an image plane

focal point

f

C

image plane

Z

Xc

c

u =
fku

Zc
Xc + u0 (3)

v =
fkv

Zc
Yc + v0 (4)

ku, kv is the horizontal/vertical pixel size.
→ their unit is pixel/length.

Usually, ku = kv = k .
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Camera Models Perspective (pin-hole) camera

Projection using homogeneous coordinates

u
v
1

 ∼ KXc (5)

∼ homogeneous division yields scale ambiguity

K is the (intrinsic) calibration matrix

K =

fku 0 u0
0 fkv v0
0 0 1

 (6)

upper triangular matrix
consists of 5 parameters, but only four are realistic

→ fku, fkv ,u0, v0
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Camera Models Perspective (pin-hole) camera

Multi-view projection of a spatial point

Locations of the same spatial point differ in images.
Locations should be detected and/or tracked in the images.
→ They are called correspondences.
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Camera Models Perspective (pin-hole) camera

Perspective camera model

Goal: to determine the location of the projected 3D points in
camera images. u

v
1

 ∼ KR [I| − t]
[
X
1

]
= P

[
X
1

]
(7)

P .
= KR [I| − t] is the projection matrix

consists of 11 parameters
→ 5 in K , 3 in R, another 3 in t.
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Camera Models Weak-perspective camera

Weak-perspective projection 1/2

It is assumed that the object is not ’too close’ from the camera
change in depth is significantly smaller than the camera-object
distance

Object plane is parallel to the image plane
it is ideal if object center contains the center of gravity of the object.

Objects are orthogonally projected into the object plane

Then perspective projection is applied
as there is no difference in depth, location of principal point does
not matter.

→ for the sake of simplicity, u0 = v0 = 0.
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Camera Models Weak-perspective camera

Weak-perspective projection 2/2

cX

focal point

f
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image plane

C

object plane

cZ

Z
~

u =
fk

Z̃c
Xc + u0 (8)

v =
fk

Z̃c
Yc + v0 (9)

If pixel is a square, ku = kv = k
It is also assumed that Zc � ∆

→ Zc ≈ Z̃c , where Z̃c is the common depth
→ scaled orthographic projection
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Camera Models Weak-perspective camera

Weak-perspective camera model 1/2

Translation and rotation in conjunction with weak-perspective
projection:

u = qrT
1(X− t) + u0 (10)

v = qrT
2(X− t) + v0, where (11)

q .
=

fk

Z̃c

rT
1 and rT

2 are the first and second row vectors of rotation matrix R.

u0 represents offset: −→ u0 = v0 = 0

u = qrT
1(X− t) (12)

v = qrT
2(X− t) (13)
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Camera Models Weak-perspective camera

Weak-perspective camera model 2/2

Projection can be written with the help of a weak-perspective
camera matrix: [

u
v

]
= [M|b]

[
X
1

]
, where (14)

M .
= q

rT
1

rT
2

 , b .
= −

qrT
1t

qrT
2t


Model has 6 degree of freedom (DoF)

if ku 6= kv , DOF=7

There is no scale ambiguity.
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Camera Models Weak-perspective camera

orthographic projection

image plane

Orthogonal projection can be applied if object
is far from the camera
depth is relatively static

Model has 5 degree of freedom (DoF)
R, t1, t2
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Camera Models Comparison of camera models
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Camera Models Comparison of camera models

Affine camera

General affine camera

u = M2×3X + t

8 degrees of freedom
M2×3 is a 2× 3matrix with rank two

Hierarchy of affine cameras
general affine camera

⇓
more constraints,
less DoFs
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Camera Models Comparison of camera models

Herarchy of affine camera models

Weak-perspective projection
7 degrees of freedom (ku 6= kv )

Scaled orthographic projection
six degrees of freedom
orthogonal projection + isotropic scale

→ if ku = kv , it is a scaled orthographic projection

Orthogonal projection
five degrees of freedom
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Camera Models Comparison of camera models
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Camera Models Comparison of camera models

Weak-perspective projection
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Camera Models Comparison of camera models

Applicability of weak-perspective projection

Projection error of weak-perspective projection

Xweak
c − Xproj

c =
∆

Z̃c
Xproj

c

→ with respect to real location
∆: distance betwen point and object plane
Z̃c mean of depth values

→ Weak-perspective projection applicable if
∆� Z̃c
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Camera Models Comparison of camera models

Benefits & disadvantages of weak-persective
projection

Advantages over real perspective projection
no scale ambiguity
less parameters to be estimated

→ accuracy of estimation can be better
simpler

→ closed-form solutions exist for several problems

Disadvantages
It is only an approximation of real projection

→ less accurate if conditions do not hold
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Camera Models Comparison of camera models

Comparison of the projection models
close view distant view

perspective

weak
perspective

orthogonal

effect perspective weak-persp. orthogonal
change in sizes yes yes no
persp. distortion yes no no
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Camera Models Back-projection to 3D space

Outline

1 Camera Models
Perspective (pin-hole) camera
Weak-perspective camera
Comparison of camera models
Back-projection to 3D space

2 Homography
Homography estimation
Non-linear estimation by minimizing geometric error

3 Camera Calibration
Calibration by a spatial object
Calibration using a chessboard
Radial distortion

4 Summary

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 29 / 85



Camera Models Back-projection to 3D space

Back-projection of a point 1/2

Projection

u =
fku

Zc
Xc + u0

v =
fkv

Zc
Yc + v0

Back projection by expressing spatial coordinates:

Xc =
Zc

fku
(u − u0)

Yc =
Zc

fkv
(v − v0)

Zc = Zc
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Camera Models Back-projection to 3D space

Back-projection of a point 2/2

Matrix form
Xc

Yc

Zc

 = Zc


1

fku
0 − u0

fku

0 1
fkv
− v0

fkv

0 0 1




u

v

1

 = ZcK−1


u

v

1

 (15)

where the calibration matrix is as follows:

K =

fku 0 u0
0 fkv v0
0 0 1


a 3D point is ambiguous w.r.t. depth
→ a point in image represents a line in 3D space

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 31 / 85



Camera Models Back-projection to 3D space

Back projection by homogeneous coordinates

Projection of 3D point to an image plane:

u = PX

Back-projection yields a line:

X(λ) = (1− λ)P+u + λC

It is a line written by a parameter λ

P+ is the pseudo-inverse of P
PP+ = I (I : identity matrix)
P+ = PT

(
PPT

)−1

The line contains
point P+u (λ = 0)
Focal point C of camera

C is the null-vector of matrix P
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Camera Models Back-projection to 3D space

Back projection and triangulation

To estimate a 3D points
at least two calibrated cameras
and two corresponding points in the images are required.

Estimation of 3D coordinates is called triangulation in computer
vision.
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Homography

Homography

General, (n + 1)-dimension case
Pn: n-dimensional space
R(n+1) extended space of Pn

transformation Pn → Pd is a homography, it is a linear
transformation R(n+1)

It is applied using homogeneous coordinates:

u′ ∼ Hu

→ H is a non-singular (n + 1)× (n + 1) matrix

3D case: n + 1 = 3
P2 is a plane in R3

A homography is a projective transormation between two planes
→ it is unequivocal

Lines remain lines after homographic transformation.
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Homography

Special cases of a homography

projective affine similarity metric identity

X

Y

0 X

Y

0 X

Y

0 X

Y

0 X

Y

0

detH 6= 0 H =

[
A t
0T 1

]
H =

[
sR −Rt
0T 1

]
H =

[
R −Rt
0T 1

]
H = E

detA 6= 0 RTR = E RTR = E

detR = 1 detR = 1

s > 0
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Homography

Plane-plane homography (1)

A planar pattern is given in 3D space.
Two different images are taken:

u = λ1P1X u′ = λ2P2X

Origin and oriantation of coordinate system can be freely selected
Let plane Z = 0 be the plane of the pattern
Then an arbitrary point within the pattern is Xi = [Xi ,Yi ,0,1]T .

Projection is more simple:

ui = λ1P̃1X̃i u′i = λ2P̃2X̃i

where X̃i = [Xi ,Yi ,1]T . Matrices P̃1 and P̃2 is the original P1 and
P2 matrices, removing the third column.
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Homography

Application of homography (1)

P̃1 and P̃2 are 3× 3 square matrices
They are invertible.

Spatial points:

1
λ1

P̃−1
1 u = X 1

λ2
P̃−1

2 u′ = X

Image coordinates can be computed from each other:

u′ =
λ2

λ1
P̃2P̃−1

1 u

Transformation is given by the 3× 3 matrix λ2
λ1

P̃2P̃−1
1 .

→ This is a homography.

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 38 / 85



Homography

Application of homography (1) : transformation of
planar patterns
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Homography

Application of homography (1/b) : Inverse Perspective
Mapping

For vision system of autonomous vehicles, the road is one of the
main focuses of attention.

The road is a planar surface.
→ It can be rectified by a homography.

Objects can be more accurately detected in rectified images.
The distances can also be measured and visualized.
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Homography

Application of homography (1/b) : Inverse Perspective
Mapping

Left: Original image. Right: Rectified image.
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Homography

Application of homography (2)

A 3D world is given, two images are taken from the same focal
point. Only camera orientations differ.
→ Input for a panoramic image.

The origin is selected as the common focal points of the images.
Camera projection matrices: P1 = K1[R1|0] and P2 = K2[R2|0]

Projection: u = K[R|0][X ,Y ,Z ,1]T . Homogeneous (last)
coordinate does not effect result.
Transformation between two corresponding image locations:

u′ = K2R2R1
T K1

−1u

Transformation is represented by 3× 3 matrix K2R2R1
T K1

−1.
→ This is a homography as well.
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Homography

Application of homography (2) : panoramic imaging
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Homography Homography estimation
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Homography Homography estimation

Point-correspondence-based homography estimation

u

v

u’

v’

4

3

2

1
1

2

3

4?

m point correspondences are given. ui → u′i :
u′i ∼ Hui , i = 1, . . . ,m
Task: estimate H

at least m = n + 2 correspondences are required
planar homography: at least four points needed.

For more points, problem is over-determined.
In case of outliers: robust estimation

Robustification requires more corresponences.
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Homography Homography estimation

Homography written by point locations

α

u′

v ′

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


u

v
1

 ,
where α 6= 0 is an unknown scale factor.

Transformation yields

u′ =
h11u + h12v + h13

h31u + h32v + h33
=

hT
1 u

hT
3 u

, (16)

v ′ =
h21u + h22v + h23

h31u + h32v + h33
=

hT
2 u

hT
3 u

, (17)

where hi is the i-th row of matrix H .
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Homography Homography estimation

Linear estimation of planar homography 1/2

Equations are multiplied by the common denominator

(h31u + h32v + h33)u′ = h11u + h12v + h13 (18)
(h31u + h32v + h33)v ′ = h21u + h22v + h23 (19)

For the i-th point, two homogeneous equations are obtained as
Aih = 0, where

Ai =

[
ui vi 1 0 0 0 −uiu′i −viu′i −u′i
0 0 0 ui vi 1 −uiv ′i −viv ′i −v ′i

]
, (20)

h = [h11,h12,h13,h21,h22,h23,h31,h32,h33]T (21)

For all points, Ah = 0 linear system of equations should be solved,
where

A = [A1,A2, . . . ,Am]T
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Homography Homography estimation

Linear estimation of planar homography 2/2

Trivial solution h = 0 is discarded
h can be determined up to a scale

→ the norm is fixed: ‖h‖ = 1

If there are m = 4 correspondences; or m > 4, but data are
noisy-free

if rank of A equals 8, exact solution can be obtained.

If m > 4 and data are contaminated
only an estimate can be computed,
by minimizing ‖Ah‖, subject to ‖h‖ = 1.

→ Optimal solution in the least squares sense is the eigenvalue of
ATA corresponding to the smallest eigenvalue.
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Homography Homography estimation

Properties of linear estimation 1/2

Linear method
→ unequivocal, clear solution

Low computational demand
→ fast execution

The cost function of the estimation is determined by ε

ε = ‖Ah‖

ε-is an algebraic distance
no direct geometric meaning

→ minimization of geometric distance(s) preferred

Hajder, Csetverikov (Faculty of Informatics) Computer Vision 49 / 85



Homography Homography estimation

Properties of linear estimation 2/2

Not robust
noisy correspondences
Works well if there are no outliers

→ one outlier can destroy the good result
→ (breakdown point) is very low

Due to numerical computation, data normalization required
elements in coefficient should be in the same order of magnitude

→ translation: origo should be at the center of gravity
→ scale: spread should be set to

√
2

Numerical optimization is usually applied, linear method yields
initial value
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Homography Homography estimation

Data normalization

Coordinate system can be freely selected.
Original homography: [u2, v2,1]T ∼ H[u1, v1,1]T

Modified coordinates: [u′1, v ′1,1]T = T1[u1, v1,1]T and
[u′2, v ′2,1]T = T2[u2, v2,1]T

where T1 and T2 are affine transformations (translation + scale)

Projection by the modified homography:
[u′2, v ′2,1]T ∼ H’[u′1, v ′1,1]T

After substitution: T2[u2, v2,1]T ∼ H’T1[u1, v1,1]T

Then: (multiplication by T−1
2 from the left):

[u2, v2,1]T ∼ T−1
2 H’T1[u1, v1,1]T

Thus, H = T−1
2 H′T1 or H′ = T2HT−1

1 :
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Homography Non-linear estimation by minimizing geometric error
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Homography Non-linear estimation by minimizing geometric error

Minimization of projection error

H

d

image 1 image 2

H
−1 u’

u

d’

Projection error ∑
i

[
d(u′i ,Hui)

]2
Symmetric projection error∑

i

([
d(u′i ,Hui)

]2
+
[
d(ui ,H−1u′i)

]2
)

Refinement of homography H: 9 variables, 8 DoFs
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Homography Non-linear estimation by minimizing geometric error

Minimization of reprojection error

d

image 1 image 2

u’

d’
u
^

^

u u’

H
−1

H

If both H and ui are refined: 9 + 2m variable
Homography Ĥ and points ûi , û′i should be refined by minimizing
the re-projection error∑

i

(
[d(ui , ûi)]2 +

[
d(u′i , û

′
i)
]2) subject to û′i = Ĥûi ∀i
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Homography Non-linear estimation by minimizing geometric error

Non-linear estimation of a homography

Cost function is non-convex
→ Global minimum cannot be guaranteed
→ Good initilal value required

Two-step approach
1 Linear estimation first,
2 then numerical optimization, e.g. Levenberg-Marquardt applied

For outlier handling, robustification is required
outlier filtering, robust statistics
RANSAC, M-estimation, median, ...
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Homography Non-linear estimation by minimizing geometric error

Properties of non-linear estimation

Benefits
Geometric error (meaningful) can be applied
Accurate
Can be straightforwardly robustified

Disadvantages
Numerical methods −→ local minima can exist

→ Results depend on initial values
Higher time demand
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Camera Calibration
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Camera Calibration

Goals of Camera calibration 1/2

Camera calibration is an important pre-step of 3D reconstruction
Estimation of intrinsic parameters
Extrinsic parameters (position, orientation)

Two main types of calibration
Photogrammetric calibration, separate process
Auto-calibration: joint estimation of camera parameters + 3D
scenes
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Camera Calibration

Goals of Camera calibration 2/2

Better camera parameters→ better 3D vision
Stereo (two-view) calibration is possible if cameras are
pre-calibrated

Calibration requires known positions of
Feature points and
Lines

Auto-calibration
More difficult
Less accurate
Applied if pre-calibration is impossible

→ This course does not deal with auto-calibration.
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Camera Calibration

Camera calibration with calibration object

Know 3D scene required
partally or fully known geometry
detectable features on the images
manual intervention can be applied

Partially-known geometry
parallel lines
perpendicular edges

→ e.g. a building

Known objects
static 3D point cloud

→ e.g. calibration cube
→ or calibration chessboard
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Camera Calibration Calibration by a spatial object

Outline

1 Camera Models
Perspective (pin-hole) camera
Weak-perspective camera
Comparison of camera models
Back-projection to 3D space

2 Homography
Homography estimation
Non-linear estimation by minimizing geometric error

3 Camera Calibration
Calibration by a spatial object
Calibration using a chessboard
Radial distortion

4 Summary
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Camera Calibration Calibration by a spatial object

Calibration by a spatial object

Given m point correspondence between 3D scene and images
plane Xi → ui : ui ∼ PXi , i = 1, . . . ,m
Task: estimation of P = KR [I| − t ].

At least 6 correspondences required
Over-determined system

Wrong correspondence −→ robust methods
Many correspondences −→ outlier detection
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Camera Calibration Calibration by a spatial object

Calibration by Cartesian coordinates

α

u
v
1

 =

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34




X
Y
Z
1

 ,
where α 6= 0 is an arbitrary scale factor.

Equations can be rewritten as

u =
P11X + P12Y + P13Z + P14

P31X + P32Y + P33Z + P34
=

pT
1 X

pT
3 X

, (22)

v =
P21X + P22Y + P23Z + P24

P31X + P32Y + P33Z + P34
=

pT
2 X

pT
3 X

, (23)

where pi is the i-th row of projection matrix P.
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Camera Calibration Calibration by a spatial object

Linear estimation of a projection matrix 1/2

Equations are multiplied by the common denominator:

(P31X + P32Y + P33Z + P34)u = P11X + P12Y + P13Z + P14 (24)
(P31X + P32Y + P33Z + P34)v = P21X + P22Y + P23Z + P24 (25)

For the i-th point, Aip = 0, where

Ai =

[
Xi Yi Zi 1 0 0 0 0 −uiXi −uiYi −uiZi −ui
0 0 0 0 Xi Yi Zi 1 −viXi −viYi −viZi −vi

]
(26)

p = [P11,P12,P13,P14,P21,P22,P23,P24,P31,P32,P33,P34]T (27)

For all the points, a homogeneous linear system of equation obtained
in the form Ap = 0 where

A = [A1,A2, . . . ,Am]T
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Camera Calibration Calibration by a spatial object

Linear estimation of a projection matrix 2/2

p = 0 trivial solution omitted.
estimation obtained up to a scale

→ norm is fixed as ‖p‖ = 1

For noiseless case
rank of A is 11, perfect solution is obtained

For over-determined and noisy case,
only estimation can be computed
minimization of ‖Ap‖ subject to: ‖p‖ = 1.

→ optimal solution if the eigenvector of ATA corresponding to the least
eigenvalue.
solution can be obtained by Singular Value Decomposition (SVD)
as well.
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Camera Calibration Calibration by a spatial object

Decomposition of a projection matrix

Structure of a projection matrix:

P = KR [I| − t] (28)

First three columns of matrix P : P3×3 = KR
Decomposition can be obtained by RQ - decomposition
It decomposes P into product of an upper triangular and an
othonormal matrices

Last column of matrix P:

p4 = −KRt (29)

Thus,
t = −RT K−1p4 (30)
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Camera Calibration Calibration by a spatial object

Data normalization

Point coordinates can be normalized similarly to homography
estimation
Original transformation: [u, v ,1]T ∼ P[X ,Y ,Z ,1]T

Normalizing transformations: [u′, v ′,1]T = T2D[u, v ,1]T and
[X ′,Y ′,Z ′,1]T = T3D[X ,Y ,Z ,1]T

T2D 2D transformation(s) (size: 3× 3)
T3D 3D transformation(s) (size: 4× 4)

Projection by normalized coordinates:
[u′, v ′,1]T ∼ P′[X ′,Y ′,Z ′,1]T

Solution applied normalized coordinates:
P = T−1

2D P′T3D or P′ = T2DPT−1
3D .
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Camera Calibration Calibration using a chessboard

Outline

1 Camera Models
Perspective (pin-hole) camera
Weak-perspective camera
Comparison of camera models
Back-projection to 3D space

2 Homography
Homography estimation
Non-linear estimation by minimizing geometric error

3 Camera Calibration
Calibration by a spatial object
Calibration using a chessboard
Radial distortion

4 Summary
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Camera Calibration Calibration using a chessboard

Chessboard-based camera calibration

Z. Zhang, Microsoft Research, 1998.

Easy and accurate method

Frequently-used

Non-perspective distorsion can be handled

Chessboard can be easily printed

Efficient implementations available, e.g. in OpenCV

See demos on Youtube
Disadvantages

Multiple images required
Avoid checked patterns on shirts :(
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Camera Calibration Calibration using a chessboard

Box-based camera calibration

R.Y. Tsai, 1986.

Non-perspective distorsion can be handled

Less user-friendly than chessboard-based one
→ not frequently used

Hard to manufacture a precize calibration box
especially in large dimensions

→ it is difficult to calibrate a camera using a small cube

Benefits
One static image is satisfactory
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Camera Calibration Calibration using a chessboard

Calibration of a camera-system using chessboards

Detected corners Chessboard Extrinsic camera params

Chessboard patterns are assymetric −→ corner detection
unambiguous.
Orientations of chessboard in images should differ.
Extrinsic parameters can also be retrieved.
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Camera Calibration Calibration using a chessboard

Chessboard-based calibration

Main steps of calibration
1 Homography exists between the calibration plane and an image
2 Camera intrinsics in matrix K can be computed from homographies

World coordinate is fixed to the board
Axis Z is perpendicular to the board −→ Z = 0 is the board plane

α

u
v
1

 = K
[
r1 r2 t

] X
Y
1

 = H

X
Y
1

 , where (31)

r1 and r2 are the first two rows of rotation R
H .

= K
[
r1 r2 t

]
Task is to (1) estimate H, then (2) computate intrinsic matrix K
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Camera Calibration Calibration using a chessboard

Chessboard-based calibration

Corners of chessboard fields can be easily detected.
chessboard -> image correspondences xi → ui used
at least 4 required

→ More correspondences needed for contaminated data
subpixel corner detection→ improved accuracy

→ intersections of lines

Estimation of homography H
linear estimation minimizing algebraic error
non-linear estimation considering geometric error

Homography H can be estimated up to an unknown scale

Let h1,h2,h3 denote the columns of H: H .
=
[
h1 h2 h3

]
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Camera Calibration Calibration using a chessboard

Computation of intrinsic parameters 1/3
For homography matrix, the following equations are valid:[

h1 h2 h3
]
∼ K

[
r1 r2 t

][
h1 h2

]
∼ K

[
r1 r2

]
K−1 [h1 h2

]
∼
[
r1 r2

]
r1 and r2 are orthonormal, therefore

rT
1r2 = hT

1Sh2 = 0, (32)

‖r1‖2 − ‖r2‖2 = hT
1Sh1 − hT

2Sh2 = 0, (33)

where S .
= K−TK−1, K−T .

= (K−1)T

This is a linear problem w.r.t. the elements of S. → They can be
optimally estimated.
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Camera Calibration Calibration using a chessboard

Computation of intrinsic parameters 2/3

Elements of calibration matrix K:

K =

fku s u0
0 fkv v0
0 0 1


S = λK−T K−1

S
λ

=


1

(fku)2 − s
(fku)2fkv

u0fkv−v0s
(fku)2fkv

− s
(fku)2fkv

s2

(fku)2(fkv )2 + 1
(fkv )2

−s(u0fkv−v0s)
(fku)2(fkv )2 + v0

(fkv )2

u0fkv−v0s
(fku)2fkv

−s(u0fkv−v0s)
(fku)2(fkv )2 + v0

(fkv )2 1 +
v2

0
fk2

v
+ (u0fkv−v0s)2

(fku)2(fkv )2


Matrix S has 5 parameters to be estimated: fku, fkv ,u0, v0, s
Each chessboard image yields 2 equations −→ at least 3 images
required
More images −→ overdetermined system
Robustification also requires many images
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Camera Calibration Calibration using a chessboard

Computation of intrinsic parameters 3/3

Matrix S −→ closed-form solution for intrinsic parameters(K)

v0 = (S11S23−S21S13)

S11S22−S2
12

λ = S33 −
S2

13+v0(S12S13−S11S23)

S11

fku =
√

λ
S11

fkv =
√
λS11/(S11S22 − S2

12)

s = −S12fk2
u fkv/λ

u0 = sv0/fkv − S13fkv
2/λ

Check: homework...
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Camera Calibration Calibration using a chessboard

Computation of extrinsic parameters

[
r1 r2 t

]
= K−1H (34)

r3 = r1 × r2 (35)

For detailed description: Z. Zhang, Technical Report

Implementation available in OpenCV, C++
Matlab toolbox also exists

http://sourceforge.net/projects/opencvlibrary/
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Camera Calibration Radial distortion

Outline

1 Camera Models
Perspective (pin-hole) camera
Weak-perspective camera
Comparison of camera models
Back-projection to 3D space

2 Homography
Homography estimation
Non-linear estimation by minimizing geometric error

3 Camera Calibration
Calibration by a spatial object
Calibration using a chessboard
Radial distortion

4 Summary
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Camera Calibration Radial distortion

Radial distortion

Non-perspective distorton is common for cheap or wide FoV (field
of view) lenses

Perspective model is only an approximation for real projection
e.g. projection of a line should be a straight line due to perspectivity

→ This is not always true for real cameras

Usually, type of distortion is radial distortion
Two subtypes: Barrel/pillow distortion

→ barellel is more frequent

Radial distortion has to be undistorted
Especially, when accurate 3D reconstruction should be achieved.

Undistortion is usual part of camera calibration
It is included e.g. in OpenCV’s calibration, in final numerical
optimization
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Camera Calibration Radial distortion

Radial distortion

barrell pillow

Straight lines become curves
It is usual for wide FoV (small focal length)

Source of images: Wikipedia
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Camera Calibration Radial distortion

Correction of radial distortion

û = uc + L(r)(u− uc), ahol (36)

u: measured, û: corrected coordinates
uc center of distortion

it is usually assumed that uc coincides with principal point u0.

L(r) is a cubic polynomial in r2

L(r) = 1 + κ1r2 + κ2r4 + κ3r6

r = ‖u− uc‖ is the distance from uc .
L(r) is a Taylor approximation of the real distortion function

→ κ1, κ2, κ3 are small real numbers

Model is built in the non-linear homography estimation
→ Parameters κ1, κ2, κ3 are stimated based on 2D geometric error
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Camera Calibration Radial distortion

OpenCV: tangential distortion

x̂ = yc + L1(x , y)(x − xc)

ŷ = yc + L2(x , y)(y − yc)

L{1,2}(x , y) are products of polynomials

L1(x , y) = 1 + 2p1xy + p2

(
r2 + 2x2

)
L2(x , y) = 1 + 2p2xy + p1

(
r2 + 2y2

)

r = x2 + y2 is the distance from the optical axis
p1,p2 are small real numbers
It is not mandatory to use all tangential parameters.
Tangential distortion does complete and not substitutes radial
distortion.
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Summary

Outline

1 Camera Models
Perspective (pin-hole) camera
Weak-perspective camera
Comparison of camera models
Back-projection to 3D space

2 Homography
Homography estimation
Non-linear estimation by minimizing geometric error

3 Camera Calibration
Calibration by a spatial object
Calibration using a chessboard
Radial distortion

4 Summary
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Summary

Camera models and Calibration

1 Camera Models
Perspective (pin-hole) camera
Weak-perspective camera
Comparison of camera models
Back-projection to 3D space

2 Homography
Homography estimation
Non-linear estimation by minimizing geometric error

3 Camera Calibration
Calibration by a spatial object
Calibration using a chessboard
Radial distortion

4 Summary
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Summary
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