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Task: An arbitrary 3 x 3 matrix A is given:

The task is to factorize it to the product of an upper triangular K and an

orthonormal matrix R.

For this purpose, the original matrix A is multiplied by three individual
rotation matrix from the right. The first rotation, represented by matrix R, is
rotated around axis . The goal is to rotate matrix A as to modify the elment

in the third row and second column to be zero:
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It involves the following equation:
ago cosa ~+ azgsina =0

Therefore,
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After this, the result is rotated around axis Y in order to modify the element

in the third row, first column to be zero:
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It is possible if

b31 COS,B — 633 sinﬁ =0.



(If b33 = 0, then B = g)
Then
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Finally the results has to be rotated around the third axis as
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The element in the second row and first column becomes zero if
C21 COS Y + caosiny = 0.

Then
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(If c32 = 0, then v = 7.)
Matrix D is an upper triangular one. One can write

AR,R,R. = D.

R, R,R. = R is an orthonormal matrix. The decomposition is obtained by
multiplying the matrix equation by the inverse of R:

A=DR".



