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Image-based 3D reconstruction

Single, calibrated image 1/2

Depth cannot be measured
at least two cameras required for depth estimation.

Surface normal can be estimated
integration of normals −→ surface
sensitive to depth change

Surface normal estimation possible in smooth, textureless
surfaces

shape from shading
intensity change −→ surface normal
less robust
reconstruction ambiguity
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Image-based 3D reconstruction

Single, calibrated image 2/2

Texture-change in a smooth, regularly-textured surface
shape from texture
texture change −→ surface normal
less robust

Illumination change
photometric stereo
more light sources −→ surface normal
robust, but ambiguity can present
high, finer details
3D position is less accurate

Special scenes
e.g. parallel and perpendicular lines
→ buildings, rooms, ...
applicability is limited
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Image-based 3D reconstruction

Stereo vision illustration

For reconstructing a 3D scene,
at least two, calibrated images required.
and point correspondences given in the images.

The process is called triangulation.
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Image-based 3D reconstruction

Standard stereo

Same calibrated cameras applied for taking the images

Optical axes are parallel

Planes of images are the same, as well as lower and upper border
lines
Baseline between focal points is small

narrow baseline

Operating principles
correspondences obtained by maching algorithms
depth estimation by triangulation

Following parameters have to know for triangulation:
baseline b
focal length f
disparity d

Disparity: point location difference between images
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Image-based 3D reconstruction

Geometry of standard stereo
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Image-based 3D reconstruction

Wide-baseline stereo

Calibrated camera(s)
two images taken from different viewpoints

Baseline is larger
wide baseline

Benefits over standard stereo
larger disparities

→ more accurate depth estimation

Disadvantages
geometric distortion in images are larger
more occlusions

→ point maching is more difficult
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Image-based 3D reconstruction

Example for narrow/wide baseline stereo

Points P and Q are on the
same projective ray
→ First cameras are the

same
d WBL � d NBL
→ more accurate

estimation for WBL
d NBL is very small

more correspondences
→ rounding noise
→ depth is layered
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Geometry of stereo vision

correspondence-based stereo vision

Image-based 3D algorithms usually exploit point correspondences
in images

Pattern matching in images is a challenging task

Less DoF −→ faster, more robust solutions
→ geometric constraint should be applied

Epipolar geometry −→ epipolar constraint
epipolar lines correspond to each other
2D search→ 1D-s search

Stereo geometry
uncalibrated cameras −→ fundamental matrix
calibrated cameras −→ essential matrix
image rectification −→ 1D matching
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Geometry of stereo vision Epipolar geometry
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Geometry of stereo vision Epipolar geometry

Geometry of stereo vision

C

image plane 1 image plane 2
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Baseline C1C2 connects two focal points.
Baselines intersect image planes at epipoles.
Two focal points and the spatial point X defines epipolar plane.
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Geometry of stereo vision Epipolar geometry

Geometry of stereo vision: a video

Point X lies on line on ray back-projected using the point in the first
image
Point in the second image, corresponding to u1, lies on an
epipolar line
→ epipolar constraint

Line u1e1 is the related epipolar line in the first image.
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Geometry of stereo vision Epipolar geometry

Epipolar geometry

C1
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epipolar plane π
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Each plane, containing the baseline, is an epipolar plane
Epipolar plane π intersects the images at lines l1 and l2.
→ Two epipolar lines correspond to each other.
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Geometry of stereo vision Epipolar geometry

Epipolar geometry: video

Epipolar plane ’rotates’ around the baseline.
Each epipolar line contains epipole(s).
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Geometry of stereo vision Essential and fundamental matrices
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Geometry of stereo vision Essential and fundamental matrices

Calibrated cameras: essential matrix 1/2

X
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Calibration matrix K is known, rotation R and translation t between
coordinate systems are unknown.
Lines C1u1, C2u2, C1C2 lay within the same plane:

C2u2 · [C1C2 × C1u1] = 0
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Geometry of stereo vision Essential and fundamental matrices

Calibrated cameras: essential matrix 2/2
In the second camera system, the following equation holds if
homogeneous coordinates are used:

u2 · [t× Ru1] = 0

Using the essential matrix E (Longuet-Higgins, 1981):

uT
2Eu1 = 0, (1)

where essential matrix is defined as

E .
= [t]×R (2)

[a]× is the cross-product matrix:

a× b = [a]×b .
=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

b1
b2
b3


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Geometry of stereo vision Essential and fundamental matrices

Properties of an essential matrix

The equation uT
2Eu1 = 0 is valid if the 2D coorinates are

normalized by K.
Normalized camera matrix: P −→ K−1P = [R| − t]

→ Normalized coordinates: u −→ K−1u

Matrix E = [t]×R has 5 degree of freedom (DoF).
3(R) + 3(t)− 1(λ)
λ: (scalar unambigity)

Rank of essential matrix is 2.
E has two equal, non-zero singular value.

Matrix E can be decomposed to translation and rotation by SVD.
translation is up to an unknown scale
sign of t is also ambiguous
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Geometry of stereo vision Essential and fundamental matrices

Uncalibrated case: fundamental matrix

Longuet-Higgins formula in case of uncalibrated cameras

uT
2Fu1 = 0, (3)

where the fundamental matrix is defined as

F .
= K−T

2 EK−1
1 (4)

u1 and u2 are unnormalized coordinates.

Matrix F has 7 DoF.
Rank of F is 2

Epipolar lines intersect each other in the same points
det F = 0 −→ F cannot be inverted, it is non-singular.

Epipolar lines: l1 = FTu2, l2 = Fu1

Epipoles: Fe1 = 0, FTe2 = 0T
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Geometry of stereo vision Estimation of the fundamental matrix
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Geometry of stereo vision Estimation of the fundamental matrix

Estimation of fundamental matrix

We are given N point correspondences:
{u1i ↔ u2i}, i = 1,2, . . . ,N

Degree of freedom for F is 7 : −→ N ≥ 7 required
Usually, N ≥ 8. (Eight-point method)
If correspondences are contaminated −→ robust estimation needed
In case of outliers: N � 7

Basic equation: uT
2iFu1i = 0

Goal is to find the singular matrix closest to F.
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Geometry of stereo vision Estimation of the fundamental matrix

Eight-point method

Input: N point correspondences {u1i ↔ u2i},N ≥ 8
Output: fundamental matrix F

Algoritmus: Normalized 8-point method

1 Data-normalization is separately carried out for the two point set:
translation
scale

2 Estimating F̂′ for normalized data
(a) Linear solution by SVD −→ F̂′
(b) Then singularity constraint det F̂′ = 0 is forced −→ F̂′

3 Denormalization
F̂′ −→ F
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Geometry of stereo vision Estimation of the fundamental matrix

Data normalization and denormalization

Goal of data normalization: numerical stability
Obligatory step: non-normalized method is not reliable.
Components of coefficient matrix should be in the same order of
magnitude.

Two point-sets are normalized by affine transformations T1 and T2.

Offset: origin is moved to the center(s) of gravity
Scale: average of point distances are scaled to be

√
2.

Denormalization: correction by affine tranformations:

F̂ = TT
2 F̂′T1 (5)
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Geometry of stereo vision Estimation of the fundamental matrix

Homogeneous linear system to estimate F

For each point correspondence: uT
2Fu1 = 0, where

uk = [uk , vk ,1]T, k = 1,2
→ For element of the fundamental matrix, the following equation is

valid:

u2u1f11 + u2v1f12 + u2f13 + v2u1f21 + v2v1f22 + v2f23 + u1f31 + v1f32 + f33 = 0

If notation f = [f11, f12, . . . , f33]T is introduced, the equation can be
written as a dot product:

[u2u1,u2v1,u2, v2u1, v2v1, v2,u1, v1,1]f = 0

For all i : {u1i ↔ u2i}

Af .=

 u21u11 u21v11 u21 v21u11 v21v11 v21 u11 v11 1
...

...
...

...
...

...
...

...
...

u2Nu1N u2Nv1N u2N v2Nu1N v2Nv1N v2N u1N v1N 1

 f = 0
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Geometry of stereo vision Estimation of the fundamental matrix

Sulution as homogeneous linear system of equations

Estimation is similar to that of homography.
Trivial solution f = 0 has to be excluded.

vector f can be computed up to a scale
→ vector norm is fixed as ‖f‖ = 1

If rank A ≤ 8
rank A = 8 −→ exact solution: nullvector
rank A < 8 −→ solution is linear combination of nullvectors

For noisy correspondences, rank A = 9.
optimal solution for algebraic error ‖Af‖
‖f‖ = 1 −→ minimization of ‖Af‖/‖f‖

→ optimal solution is the eigenvector of ATA corresponding to the
smallest eigenvalue

Solution can also be obtained from SVD of A:
A = UDVT −→ last column (vector) of V.
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Geometry of stereo vision Estimation of the fundamental matrix

Singular constraint

If det F 6= 0
epipolar lines do not intersect each other in epipole.

→ less accurate epipolar geometry −→ less accurate reconstruction

Solution of homogeneous linear system does not guarantee
singularity: det F̂ 6= 0.

Task is to find matrix F̂′, for which
Frobenius norm ‖F̂− F̂′‖ is minimal, and
det F̂ ′ = 0

SVD of A: A = UDVT

D = diag(δ1, δ2, δ3) is the diagonal matrix containing singular values,
and δ1 ≥ δ2 ≥ δ3
The estimation for closest matrix, fulfilling singularity constraint:

F̂ ′ = U diag(δ1, δ2,0)VT (6)
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Geometry of stereo vision Estimation of the fundamental matrix

Epipoles from fudamental matrix F

The epipoles are the null-vectors of F and FT: Fe1 = 0, and
FTe2 = 0.

Nullvector can be calculated by e.g. SVD.

Singularity constraint guarantees that F has a null-vector

Singular Value Decomposition: F = UDVT, and then
e1: last column of V.
e2: last column of U.

Hajder, Csetverikov (Faculty of Informatics) 3D Computer Vision 30 / 73



Geometry of stereo vision Estimation of the fundamental matrix

Limits of eight-point method

Similar to homography/projective matrix estimation
Significant difference: singularity constraint introduces

→ Similar benefits/weak points to homography/proj. matrix estimation

Method is not robust
RANSAC-like robustification can be applied.

There are another solution
Seven-point method: determinant constraint is forced to linear
combination of null-spaces.
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Geometry of stereo vision Estimation of the fundamental matrix

Non-linear methods to estimate F

Algebraic error
It yields initial value(s) for numerical optimization.

Geometric error
line-point distance

ε =
x′T Fx
|Fx|1:2

Symmetric version

ε =
x′T Fx
|Fx|1:2

+
xT FT x′∣∣FT x′

∣∣
1:2

where operator (x)1:2 denotes the first two coordinates of vector x.
Geometric error minimized by numerical techniques.
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Geometry of stereo vision Estimation of the fundamental matrix

Estimation of epipolar geometry: 1st example

KLT feature points #1 KLT feature points #2

epipolar lines #1 epipolar lines #2
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Geometry of stereo vision Estimation of the fundamental matrix

Estimation of epipolar geometry: 2nd example

Hajder, Csetverikov (Faculty of Informatics) 3D Computer Vision 34 / 73



Standard stereo and rectification
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Standard stereo and rectification Triangulation for standard stereo
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Standard stereo and rectification Triangulation for standard stereo

Geometry of standard stereo
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Standard stereo and rectification Triangulation for standard stereo

Precision of depth estimation

If d → 0, and Z →∞
Disparity of distant points are small.

Relation between disparity and precision of depth estimation

|∆Z |
Z

=
|∆d |
|d |

larger the disparity, smaller the relative depth error
→ precision is increasing

Influence of base length

d =
bf
Z

For larger b, same depth value yields larger disparity
→ Precision of depth estimation increasing
→ more pixels −→ precision of diparity increasing
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Standard stereo and rectification Retification of stereo images
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Standard stereo and rectification Retification of stereo images

Goals of rectification

Input of rectification: non-standard stereo image pair

Goal of rectification: make stereo matching more accurate
After rectification, corresponding pixels are located in the same row

→ standard stereo, 1D search

Rectification based on epipolar geometry
Images are transformed based on epipolar geometry

→ after transformation, corresponding epipolar lines are placed on the
same rows

→ epipoles are in the infinity

For rectification, only the fundamental matrix has to be known
→ Fundamental matrix represents epipolar geometry
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Standard stereo and rectification Retification of stereo images

Rectification methods

Only the general principles are discussed here.
Rectification is a complex method.
Rectification is not required, it has both advantages and
disadvantages.

Rectification can be carried out by homographies.
It has ambiguity: there are infinite number of rectification
transformations for the same image pair.

The aim is to find a 2D projective transformation that
fulfills the requirement for rectification and
distorts minimally the images.

Knowledge of camera intrinsic parameters helps the rectification.
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Standard stereo and rectification Retification of stereo images

Geometry of rectification
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Standard stereo and rectification Retification of stereo images

Rectification: a video video

Epipoles transformed to infinity
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Standard stereo and rectification Retification of stereo images

Rectification: an example

before

after
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Standard stereo and rectification Retification of stereo images

Benefits of rectifications

Modify the inage in order to get a standard stereo,
→ then algorithms for standard stereo can be applyied.

The properties of epipolar geometry can be visualized by
rectifying the images.

For practical purposes, the rectification has to be very accurate
otherwise there will be a shift between corresponding rows.

→ feature matching more challenging, 1D cannot be run.
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Standard stereo and rectification Retification of stereo images

Weak points of rectification

Distortion under rectification hardly depends on baseline width.
For wide-baseline stereo:

Rectification significantly destorts the image.
→ Pixel-based method can be applied for feature matching
→ Correspondence-based methods often fail.

Size and shape of rectified images differ from original ones.
→ Feature matching is more challenging.

→ Many experts do not agree that rectification is necessary.
Epipolar lines can be followed if fundamental matrix is given.
Matching can be carried out in original frames.

→ Then noise is not distorted by rectifying transformation.
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3D reconstruction from stereo images
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3D reconstruction from stereo images

Types of stereo reconstruction

Fully calibrated reconstruction
Known intrinsic and extrinsic camera parameters
reconstruction by triangulation
known baseline −→ known scale

Metric (Euclidean) reconstruction
knonw intrinsic camera parameters, n ≥ 8 point correspondences
given
Extrinsic camera parameters obtained from essential matrix
Reconstruction up to a similarity transformation

→ up to a scale

Projective reconstruction
unknown camera parameters, n ≥ 8 point correspondences are
given
Composition of projective matrices from a fundamental matrix
reconstruction can be computed up to a projective transformation
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3D reconstruction from stereo images Triangulation and metric reconstruction
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3D reconstruction from stereo images Triangulation and metric reconstruction

Triangulation

Task:
Two calibrated cameras are given, including both intrinsic and
extrinsic parameters, and
Locations u1,u2 of the projection of spatial point X are given
Goal is to estimate spatial location X.

Two calibration matrices are known, therefore
for a projection matrix: K−1P = [R| − t] and
for calibrated (aka. normalized) coordinates: p = K−1u.

For the sake of simplicity, the first camera gives the world
coordinate system

non-homogeneous coordinates are used
→ p2 = R(p1 − t),p1 = t + RTp2

Image points are bask-projected to 3D space
two rays obtained, they usually do not intersect each other due to
noise/calibration error

→ task is to give an estimate for spatial point X.
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3D reconstruction from stereo images Triangulation and metric reconstruction

Linear triangulation: geometry

C1

R, 

X1

X

X

C2

2

p
1

r
1

r2

w

p
2

t

Line X1X2 perpendicular to both r1 and r2.
Estimate X is the middle point of section X1X2

Vector w is parallel to X1X2.
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3D reconstruction from stereo images Triangulation and metric reconstruction

Linear triangulation: notations

C1

R, 

X1

X

X

C2

2

p
1

r
1

r2

w

p
2

t

αp1 is a point on ray r1 (α ∈ <)
t + βRTp2 a point on other ray r2 (β ∈ <)
→ coordinate system fixed to the first camera

Let X1 = α0p1, X2 = t + RT(β0p2 − t)
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3D reconstruction from stereo images Triangulation and metric reconstruction

Linear triangulation: solution

Task is to determine
the middle point of the line section X1X2

→ determination of α0 and β0 required

Remark that
Vector w = p1 × RT(p2 − t) perpendicular to both r1 and r2.
Line αp1 + γw parallel to w and contain the point αp1 (γ ∈ <).

→ α0, β0 (as well as γ0 ) are given by the solution of the following
linear system: :

αp1 + t + βRT(p2 − t) + γ[p1 × RT(p2 − t)] = 0 (7)

Triangulated point is obtained, e.g by α0p1

There is no solution if r1 and r2 are parallel
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3D reconstruction from stereo images Triangulation and metric reconstruction

Linear triangulation: an algebraic solution

Two projected locations of spatial point X are given:

λ1u1 = P1X
λ2u2 = P2X

λ1 and λ2 can be eliminated. 2 + 2 equations are obtained:

upT
3 X = pT

1 X
vpT

3 X = pT
2 X

where pT
i is the i-th row of projection matrix P.

Both projections yield 2 equations. Only vector X is unknown.
Solution for X is calculated by solving the homogeneous linear
system of equations.
Important remark: solution is obtained in homogeneous
coordinates.
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3D reconstruction from stereo images Triangulation and metric reconstruction

Refinement by minimizing the reprojection error

Linear algorithm yield points Xi , i = 1,2, . . . ,n if n point pairs are
given

The solution should be refined
minimization of reprojection error yields more accurate estimate

For minimizing the reprojection error, the following parameters
have to be refined:

Spatial points Xi
Rotation matrix R and baseline vector t

→ intrinsic camera parameters are usually fixed as cameras are
pre-calibrated

Initial values for numerical optimization
Spatial points Xi from linear triangulation
Initial rotation matrix R and baseline vector t by decomposing the
essential matrix
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3D reconstruction from stereo images Triangulation and metric reconstruction

Metric reconstruction by decomposing the essential
matrix

Intrinsic camera matrices K1 and K2 given, fundamental matrix
computed from n ≥ 8 point correpondences

E can be retrieved from F, K1 and K2.
from E, extrinsic parameters can be obtained by decomposition

Unknown baseline −→ unknown scale
baseline normalized to 1

→ Euclidean reconstruction possible up to a similarity transformation

It is assumed that world coordinate is fixed to the first camera
→ Therefore, P1 = [I|0], where I is the identity matrix

Position of second camera computed from essential matrix E by
SVD.

Four solutions obtained,
only one is correct.

Hajder, Csetverikov (Faculty of Informatics) 3D Computer Vision 56 / 73



3D reconstruction from stereo images Triangulation and metric reconstruction

Camera pose estimation by SVD
The Singular Value Decompoisition of E is E = UDVT, where
D = diag(δ, δ, 0)
→ E has two equal singuar values

Four solutions can be obtained as follows:

R1 = UWVT R2 = UWTVT

[t1]× = δUZUT [t2]× = −δUZUT

where

W .
=

0 −1 0
1 0 0
0 0 1

 Z .
=

0 −1 0
1 0 0
0 0 0


Combination of 2-2 candidates for translation and rotation yield 4
solutions.
Determinants of R1 and R2 have to be positive, otherwise matrices
should be multiplied by −1.
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3D reconstruction from stereo images Triangulation and metric reconstruction

Visualization of the four solutions

AB’B’A

(3)

A B

(2)

AB

(4)

(1)

Left and right: camera locations replaces
Top and bottom: mirror to base lane
3D point is in front of the cameras only in the top-left case.
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3D reconstruction from stereo images Projective reconstruction

Projective reconstruction based on fundamental matrix

Unknown intrinsic parameters, n ≥ 8 known point
correspondences
Reconstruction can be obtained up to a projective transformation.

If H is a 4× 4 projective transformation, then Pk X = (Pk H)(H−1X),
k = 1,2

→ if u1 ↔ u2 are projections of X by Pk , then u1 ↔ u2 are those of
H−1X by Pk H.

→ From fundamental matrix F, matrices Pk can be computed up to the
transformation H

There is a matrix H to get the canonical form for P1 as
P1 = [I|0]
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3D reconstruction from stereo images Projective reconstruction

Summary of calibrated and uncalibrated 3D vision

calibrated case uncalibrated case
epipolar constraint uT

2K−T
2 EK−1

1 u1 = 0 uT
2Fu1 = 0

fundamental matrix E = [t]×R F = K−T
2 EK−1

1

epipoles EK−1
1 e1 = 0 Fe1 = 0

eT
2 K−T

2 ET = 0T e2F T = 0
epipolar lines l1 = K−T

1 ETK−1
2 u2 l1 = F Tu2

l2 = K−T
2 EK−1

1 u1 l2 = Fu1

reconstruction metric: Xm projective: Xp = HXm
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3D reconstruction from stereo images Projective reconstruction

Correction of projective reconstruction

Metric reconstruction is the subset of projective reconstruction
How can projective tranformation H be computed?
What kind of knowledge is required for correction?

(Direct) method
3D locations of five points must be known.

→ H can be estimated: Xm = H−1Xp

(Stratified) method
Parallel and perpendicular lines
Projective −→ affine −→ metric

→ For an affine reconstruction, H is an affinity
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3D reconstruction from stereo images Projective reconstruction

Data for correction of projective reconstruction: a video

Parallel and
perpendicular lines
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3D reconstruction from stereo images Planar Motion

Planar motion

A vehicle moves on a planar road.
It can be rotated and translated.
Coordinate system fixed to the car, axis Z parallel to the road.
Two frames of the video yields a stereo problem.
Vehicle is rotated, due to steering, around axis Y by angle β.
Translation is in plane XZ : its direction represented by angle α.

t =

 tx
0
tz

 = ρ

 cosα
0

sinα

 , R =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


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3D reconstruction from stereo images Planar Motion

Planar motion: essential matrix

Furthermore

t = ρ

 cosα
0

sinα

 → [t]X = ρ

 0 − sinα 0
sinα 0 − cosα

0 cosα 0


Then the essential matrix is as follows:

E = [t]X R ∼

 0 − sinα 0
sinα cosβ + cosα sinβ 0 sinα sinβ − cosα cosβ

0 cosα 0


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3D reconstruction from stereo images Planar Motion

Planar motion: essential and fundamental matrices
After applying trigonometric equalities:

E ∼

 0 − sinα 0
sin(α + β) 0 − cos(α + β)

0 cosα 0


If camera intrinsic matrices are the same for the images, and the
common matrix is a so-called semi-calibrated one:
K = diag(f , f ,1), then

F = K−T EK−1 ∼

 0 − sinα
f 2 0

sin(α+β)
f 2 0 − cos(α+β)

f
0 cosα

f 0


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3D reconstruction from stereo images Planar Motion

Planar motion: estimation

Only four out of nine elements in fundamental/essential matrices
are nonzero.

Essental matrix can be estimated by two point correspondences.
Semi-calibrated camera: three correspondences.

Robustification, e.g. by RANSAC, is fast
Equation from one correspondence p1 = [u1, v1], p2 = [u2, v2] for
two angles α and β (calibrated case):〈

[v1,−u2v1,−v2, v2u1]T , [cosα, sinα, cos(α + β), sin(α + β)]T
〉

= 0

For multiple correspondences, solution can be written as

A1v1 + A2v2 = 0

where v1 = [cosα, sinα]T and v2 = [cos(α + β), sin(α + β)]T
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3D reconstruction from stereo images Planar Motion

Planar motion: estimation

Thus, vT
1 v1 = vT

2 v2 = 1.
Furthermore,

A1v1 + A2v2 = 0 (8)
A1v1 = −A2v2 (9)

v1 = −A†1A2v2 (10)

vT
1 v1 = vT

2

(
A†1A2

)T (
A†1A2

)
v2 = 1 (11)

vT
2 Bv2 = 1 (12)

If B =
(

A†1A2

)T (
A†1A2

)
Thus, v2 is given by the intersection of an ellipse and the
unit-radius circle as v2Bv2 = vT

2 v2 = 1.
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3D reconstruction from stereo images Planar Motion

Planar motion: estimation

Solution is given by Singular Value Decomposition: B = UT SU.
Let r = [rx ry ]T = Uv2.

vT
2 Bv2 = 1 (13)

vT
2 UT SUv2 = 1 (14)

rT
2 Sr2 = 1 (15)

rT
2

[
s1 0
0 s2

]
r2 = 1 (16)

Therefore, s1r2
x + s2r2

y = 1

and r2
x + r2

y = 1

→ Linear system for r2
x and r2

y . (Four candidate solutions, similarly to
general stereo vision.)
v2 = UT r and v1 = −A†1A2v2 gives final solution.
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