Computer Vision

Levente Hajder, Dmitry Chetverikov

Eötvös Loránd University, Faculty of Informatics

Hajder, Csetverikov (Faculty of Informatics) [3D Computer Vision](#page-72-0) 1/73

Þ

イロト イ押ト イヨト イヨ

Basics of Stereo Vision

- [Image-based 3D reconstruction](#page-2-0)
- [Geometry of stereo vision](#page-10-0)
	- **•** [Epipolar geometry](#page-12-0)
	- **[Essential and fundamental matrices](#page-17-0)**
	- **•** [Estimation of the fundamental matrix](#page-22-0)
- [Standard stereo and rectification](#page-34-0)
	- **•** [Triangulation for standard stereo](#page-35-0)
	- [Retification of stereo images](#page-38-0)
- [3D reconstruction from stereo images](#page-46-0)
	- **•** [Triangulation and metric reconstruction](#page-48-0)
	- [Projective reconstruction](#page-58-0)
	- **[Planar Motion](#page-63-0)**

Summarv

B K

Outline

[Image-based 3D reconstruction](#page-2-0) [Geometry of stereo vision](#page-10-0) **•** [Epipolar geometry](#page-12-0) [Essential and fundamental matrices](#page-17-0) **•** [Estimation of the fundamental matrix](#page-22-0) [Standard stereo and rectification](#page-34-0) [Triangulation for standard stereo](#page-35-0) \bullet [Retification of stereo images](#page-38-0) 4 [3D reconstruction from stereo images](#page-46-0) **•** [Triangulation and metric reconstruction](#page-48-0) [Projective reconstruction](#page-58-0) \bullet [Planar Motion](#page-63-0) \bullet 5 [Summary](#page-70-0) Haider, Csetverikov (Faculty of Informatics) [3D Computer Vision](#page-0-0) 3/73

B K

Single, calibrated image 1/2

- Depth cannot be measured
	- at least two cameras required for depth estimation.
- Surface normal can be estimated
	- integration of normals \longrightarrow surface
	- sensitive to depth change
- Surface normal estimation possible in smooth, textureless surfaces
	- **shape from shading**
	- intensity change \longrightarrow surface normal
	- **e** less robust
	- reconstruction ambiguity

イタト イミト イミトー

Single, calibrated image 2/2

- Texture-change in a smooth, regularly-textured surface
	- **shape from texture**
	- texture change \longrightarrow surface normal
	- **e** less robust
- Illumination change
	- photometric stereo
	- more light sources $→$ surface normal
	- robust, but ambiguity can present
	- high, finer details
	- 3D position is less accurate
- **•** Special scenes
	- e.g. parallel and perpendicular lines
	- $\bullet \rightarrow$ buildings, rooms, ...
	- applicability is limited

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Stereo vision illustration

- For reconstructing a 3D scene,
	- at least two, calibrated images required.
	- and point correspondences given in the images.
- The process is called **triangulation**.

Standard stereo

- Same calibrated cameras applied for taking the images
- Optical axes are parallel
- Planes of images are the same, as well as lower and upper border lines
- Baseline between focal points is small
	- *narrow baseline*
- Operating principles
	- correspondences obtained by maching algorithms
	- depth estimation by triangulation
- Following parameters have to know for triangulation:
	- baseline *b*
	- **•** focal length *f*
	- disparity *d*
- Disparity: point location difference betwe[en](#page-5-0) i[m](#page-7-0)[a](#page-5-0)[ge](#page-6-0)[s](#page-1-0)

Geometry of standard stereo

÷.

(ロトイ部)→(理)→(理)→

Wide-baseline stereo

- Calibrated camera(s)
	- two images taken from different viewpoints
- **•** Baseline is larger
	- *wide baseline*
- Benefits over standard stereo
	- larger disparities
	- \rightarrow more accurate depth estimation
- **o** Disadvantages
	- geometric distortion in images are larger
	- more occlusions
	- \rightarrow point maching is more difficult

4 何 ト 4 ヨ ト 4 ヨ ト

Example for narrow/wide baseline stereo

- Points *P* and *Q* are on the same projective ray
	- \rightarrow First cameras are the same
- \bullet $d_{\text{WBI}} \gg d_{\text{NBI}}$
	- \rightarrow more accurate estimation for WBL
- \bullet d_{NB} is very small
	- **·** more correspondences
	- \rightarrow rounding noise
	- \rightarrow depth is layered

イロト イ押ト イヨト イヨト

Outline

E K

correspondence-based stereo vision

- Image-based 3D algorithms usually exploit point correspondences in images
	- Pattern matching in images is a challenging task
- Less DoF \longrightarrow faster, more robust solutions
	- \rightarrow geometric constraint should be applied
- **Epipolar geometry** −→ **epipolar constraint**
	- epipolar lines correspond to each other
	- 2D search \rightarrow 1D-s search
- Stereo geometry
	- uncalibrated cameras −→ **fundamental matrix**
	- calibrated cameras −→ **essential matrix**
	- image rectification \longrightarrow 1D matching

イロト イ押ト イヨト イヨト

Overview

4. B. K.

Geometry of stereo vision

- **Baseline C₁C**₂ connects two focal points. \bullet
- Baselines intersect image planes at epipoles.
- Two focal points and the spatial point **X** defines **epipolar plane**.

4 D E 4 HP

Geometry of stereo vision: a video

- Point **X** lies on line on ray back-projected using the point in the first image
- **•** Point in the second image, corresponding to **u**₁, lies on an **epipolar line**
	- → **epipolar constraint**
- Lin[e](#page-12-0) $\mathbf{u}_1 \mathbf{e}_1$ $\mathbf{u}_1 \mathbf{e}_1$ $\mathbf{u}_1 \mathbf{e}_1$ $\mathbf{u}_1 \mathbf{e}_1$ is the related epipolar line in th[e fi](#page-13-0)[rst](#page-15-0) [i](#page-13-0)ma[g](#page-11-0)e[.](#page-16-0)

Epipolar geometry

- Each plane, containing the baseline, is an epipolar plane
- **•** Epipolar plane π intersects the images at lines I_1 and I_2 .
	- \rightarrow Two epipolar lines correspond to each other.

K ロメ K 御 メ K 君 メ K 君 X

Epipolar geometry: video

- Epipolar plane 'rotates' around the baseline.
- Each epipolar line contains epipole(s).

イロト イ押ト イヨト イヨ

Overview

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}$

Calibrated cameras: essential matrix 1/2

- Calibration matrix **K** is known, rotation **R** and translation **t** between coordinate systems are unknown.
- Lines C_1u_1 , C_2u_2 , C_1C_2 lay within the same plane:

$$
\boldsymbol{C_2u_2}\cdot\left[\boldsymbol{C_1C_2}\times\boldsymbol{C_1u_1}\right]=0
$$

4 0 5

 \rightarrow \rightarrow \rightarrow

Calibrated cameras: essential matrix 2/2

• In the second camera system, the following equation holds if homogeneous coordinates are used:

 $u_2 \cdot [\mathbf{t} \times \mathbf{R} \mathbf{u}_1] = 0$

Using the **essential matrix E** (Longuet-Higgins, 1981):

$$
\mathbf{u}_2^T \mathbf{E} \mathbf{u}_1 = 0, \tag{1}
$$

where essential matrix is defined as

$$
\mathsf{E} \doteq [\mathsf{t}]_{\times} R \tag{2}
$$

• $[a]_x$ is the cross-product matrix:

$$
\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
$$

Properties of an essential matrix

- The equation $\mathbf{u}_2^T \mathbf{E} \mathbf{u}_1 = 0$ is valid if the 2D coorinates are normalized by **K**.
	- Normalized camera matrix: **P** −→ **K** [−]¹**P** = [**R**| − **t**]
	- \rightarrow Normalized coordinates: $\mathsf{u} \longrightarrow \mathsf{K}^{-1}\mathsf{u}$
- Matrix $\mathbf{E} = [\mathbf{t}] \times R$ has 5 degree of freedom (DoF).
	- \bullet 3(**R**) + 3(**t**) − 1(λ)
	- λ : (scalar unambigity)
- **Bank of essential matrix is 2.**
	- **E** has two equal, non-zero singular value.
- Matrix **E** can be decomposed to translation and rotation by SVD.
	- translation is up to an unknown scale
	- sign of **t** is also ambiguous

в

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Uncalibrated case: fundamental matrix

Longuet-Higgins formula in case of **uncalibrated** cameras

$$
\mathbf{u}_2^{\mathsf{T}} F \mathbf{u}_1 = 0, \tag{3}
$$

where the **fundamental matrix** is defined as

$$
\mathbf{F} \doteq \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} \tag{4}
$$

- **u**₁ and **u**₂ are unnormalized coordinates.
- Matrix **F** has 7 DoF.
- **e** Rank of **F** is 2
	- Epipolar lines intersect each other in the same points
	- \bullet det $\mathbf{F} = 0 \longrightarrow \mathbf{F}$ cannot be inverted, it is non-singular.
- Epipolar lines: $I_1 = F^T u_2$, $I_2 = Fu_1$
- E pipoles: $\mathbf{F}\mathbf{e}_1 = \mathbf{0}, \, \mathbf{F}^\mathsf{T}\mathbf{e}_2 = \mathbf{0}^\mathsf{T}$

Overview

不同 医

Estimation of fundamental matrix

• We are given *N* point correspondences:

 ${\bf u}_1 \leftrightarrow {\bf u}_2$; $i, i = 1, 2, \ldots, N$

- Degree of freedom for **F** is $7 : \rightarrow N > 7$ required
- Usually, $N > 8$. (Eight-point method)
- If correspondences are contaminated \rightarrow robust estimation needed
- \bullet In case of outliers: $N \gg 7$
- Basic equation: $\mathbf{u}_{2i}^{\mathsf{T}}\mathbf{F}\mathbf{u}_{1i} = 0$
- Goal is to find the singular matrix closest to **F**.

イロト イ押ト イヨト イヨトー

Eight-point method

Input: *N* point correspondences $\{u_{1i} \leftrightarrow u_{2i}\}, N \geq 8$ **Output**: fundamental matrix **F**

Algoritmus: *Normalized* 8*-point method*

- **1** Data-normalization is separately carried out for the two point set:
	- **o** translation
	- scale
- ² Estimating \hat{F} for normalized data
	- (a) Linear solution by SVD $\longrightarrow \hat{F}$ ^{*'*}
	- (b) Then singularity constraint det $\hat{\mathbf{F}}' = 0$ is forced $\longrightarrow \hat{\mathbf{F}}'$
- **3** Denormalization
	- $\hat{F}' \longrightarrow F$

イロト イ押ト イヨト イヨト

Data normalization and denormalization

- Goal of **data normalization**: numerical stability
	- **Obligatory step**: non-normalized method is not reliable.
	- Components of coefficient matrix should be in the same order of magnitude.
- Two point-sets are normalized by affine transformations **T**¹ and **T**2.
	- Offset: origin is moved to the center(s) of gravity
	- Onset: origin is moved to the center(s) or gravity
Scale: average of point distances are scaled to be $\sqrt{2}$.
- **Denormalization:** correction by affine tranformations:

$$
\hat{\mathbf{F}} = \mathbf{T}_2^T \hat{\mathbf{F}}^T \mathbf{T}_1 \tag{5}
$$

Homogeneous linear system to estimate **F**

- For each point correspondence: $\mathbf{u}_2^T \mathbf{F} \mathbf{u}_1 = 0$, where $$
- \rightarrow For element of the fundamental matrix, the following equation is valid:

 $u_2u_1t_{11} + u_2v_1t_{12} + u_2t_{13} + v_2u_1t_{21} + v_2v_1t_{22} + v_2t_{23} + u_1t_{31} + v_1t_{32} + t_{33} = 0$

If notation $\mathbf{f} = [f_{11}, f_{12}, \ldots, f_{33}]^\mathsf{T}$ is introduced, the equation can be written as a dot product:

 $[u_2u_1, u_2v_1, u_2, v_2u_1, v_2v_1, v_2, u_1, v_1, 1]$ **f** = 0

 \bullet For all *i*: { $\mathbf{u}_{1i} \leftrightarrow \mathbf{u}_{2i}$ }

 A **f** $\stackrel{.}{=}$ \lceil $\Big\}$ *u*21*u*¹¹ *u*21*v*¹¹ *u*²¹ *v*21*u*¹¹ *v*21*v*¹¹ *v*²¹ *u*¹¹ *v*¹¹ 1 . *u*2*^N u*1*^N u*2*^N v*1*^N u*2*^N v*2*^N u*1*^N v*2*^N v*1*^N v*2*^N u*1*^N v*1*^N* 1 1 \vert **f** = **0**

K □ ▶ K @ ▶ K 글 X K 글 X → 글 → 9 Q Q

Sulution as homogeneous linear system of equations

- Estimation is similar to that of **homography**.
- **•** Trivial solution $f = 0$ has to be excluded.
	- vector **f** can be computed up to a scale
	- \rightarrow vector norm is fixed as $\Vert f \Vert = 1$
- \bullet If rank $A \leq 8$
	- rank $A = 8 \longrightarrow$ exact solution: nullvector
	- rank **A** < 8 → solution is linear combination of nullvectors
- For noisy correspondences, rank $A = 9$.
	- **•** optimal solution for algebraic error $\Vert \mathbf{A} \mathbf{f} \Vert$
	- $\|f\| = 1 \longrightarrow$ minimization of $\|Af\|/\|f\|$
	- \rightarrow optimal solution is the eigenvector of $\mathsf{A}^\mathsf{T}\mathsf{A}$ corresponding to the smallest eigenvalue
- Solution can also be obtained from SVD of **A**:
	- \bullet **A** = **UDV**^T \longrightarrow last column (vector) of **V**.

в

イロト イ押ト イヨト イヨト

Singular constraint

- **•** If det $F \neq 0$
	- epipolar lines do not intersect each other in epipole.
	- \rightarrow less accurate epipolar geometry \rightarrow less accurate reconstruction
- Solution of homogeneous linear system does not guarantee singularity: $\det \widehat{\mathbf{F}} \neq 0$.
- Task is to find matrix $\hat{\mathbf{F}}'$, for which
	- **•** Frobenius norm $\Vert \hat{F} \hat{F}' \Vert$ is minimal, and
	- \bullet det \hat{F} ^{\prime} = 0

\bullet SVD of **A**: $A = UDV^T$

- **D** = diag(δ_1 , δ_2 , δ_3) is the diagonal matrix containing singular values, and $\delta_1 > \delta_2 > \delta_3$
- The estimation for closest matrix, fulfilling singularity constraint:

$$
\widehat{F}' = \mathbf{U} \operatorname{diag}(\delta_1, \delta_2, 0) \mathbf{V}^{\mathsf{T}}
$$
 (6)

4 0 8 4 4 9 8 4 9 8 4 9 8

Epipoles from fudamental matrix **F**

- The epipoles are the null-vectors of F and F^{T} : $\mathsf{Fe}_{1} = \mathsf{0},$ and $$
- Nullvector can be calculated by e.g. SVD.
- Singularity constraint guarantees that **F** has a null-vector
- Singular Value Decomposition: **F** = **UDV**^T , and then
	- **e**1: last column of **V**.
	- **e**2: last column of **U**.

イロト イ押 トイラト イラト

Limits of eight-point method

• Similar to homography/projective matrix estimation

- Significant difference: singularity constraint introduces
- \rightarrow Similar benefits/weak points to homography/proj. matrix estimation
- Method is not robust
	- RANSAC-like robustification can be applied.
- There are another solution
	- Seven-point method: determinant constraint is forced to linear combination of null-spaces.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Non-linear methods to estimate *F*

- Algebraic error
	- It yields initial value(s) for numerical optimization.
- **Geometric error**
	- line-point distance

$$
\epsilon = \frac{{\mathbf{x}'}^T \mathsf{F} \mathbf{x}}{|\mathsf{F} \mathbf{x}|_{1:2}}
$$

• Symmetric version

$$
\epsilon = \frac{{\mathbf{x}'}^T \mathbf{F} \mathbf{x}}{|\mathbf{F} \mathbf{x}|_{1:2}} + \frac{\mathbf{x}^T \mathbf{F}^T \mathbf{x}'}{|\mathbf{F}^T \mathbf{x}'|_{1:2}}
$$

- where operator $(\mathbf{x})_{1:2}$ denotes the first two coordinates of vector **x**.
- Geometric error minimized by numerical [tec](#page-30-0)[hn](#page-32-0)[i](#page-30-0)[qu](#page-31-0)[e](#page-32-0)[s](#page-21-0)[.](#page-22-0)

Estimation of epipolar geometry: 1st example

KLT feature points #1 KLT feature points #2

epipol[ar](#page-31-0) l[in](#page-33-0)[e](#page-31-0)[s](#page-32-0) [#](#page-33-0)1 epipolar lines #[2](#page-21-0) (0.12333338)

Þ

Estimation of epipolar geometry: 2nd example

Outline

[Image-based 3D reconstruction](#page-2-0) [Geometry of stereo vision](#page-10-0) **•** [Epipolar geometry](#page-12-0) **• [Essential and fundamental matrices](#page-17-0) •** [Estimation of the fundamental matrix](#page-22-0) [Standard stereo and rectification](#page-34-0) • [Triangulation for standard stereo](#page-35-0) • [Retification of stereo images](#page-38-0) 4 [3D reconstruction from stereo images](#page-46-0) **•** [Triangulation and metric reconstruction](#page-48-0) [Projective reconstruction](#page-58-0) \bullet [Planar Motion](#page-63-0) 5 [Summary](#page-70-0)

∋⇒

Overview

4. B. K.
Geometry of standard stereo

Precision of depth estimation

- **•** If $d \to 0$, and $Z \to \infty$
	- Disparity of distant points are small.
- Relation between disparity and precision of depth estimation

$$
\frac{|\Delta Z|}{Z} = \frac{|\Delta d|}{|d|}
$$

- larger the disparity, smaller the relative depth error
- \rightarrow precision is increasing
- Influence of base length

$$
d=\frac{bf}{Z}
$$

- For larger *b*, same depth value yields larger disparity
- \rightarrow Precision of depth estimation increasing
- \rightarrow \rightarrow \rightarrow more pixels \rightarrow precision of diparity incr[ea](#page-36-0)s[in](#page-38-0)g 4 **O E 4 AP E**

Overview

4. B. K.

Goals of rectification

- Input of rectification: non-standard stereo image pair
- Goal of rectification: make stereo matching more accurate
	- After rectification, corresponding pixels are located in the same row
	- \rightarrow standard stereo, 1D search
- Rectification based on epipolar geometry
	- Images are transformed based on epipolar geometry
	- \rightarrow after transformation, corresponding epipolar lines are placed on the same rows
	- \rightarrow epipoles are in the infinity
- For rectification, only the fundamental matrix has to be known
	- \rightarrow Fundamental matrix represents epipolar geometry

イロト イ押 トイラト イラト

Rectification methods

- Only the general principles are discussed here.
	- Rectification is a complex method.
	- **•** Rectification **is not required**, it has both advantages and disadvantages.
- Rectification can be carried out by homographies.
- It has ambiguity: there are infinite number of rectification transformations for the same image pair.
- The aim is to find a 2D projective transformation that
	- fulfills the requirement for rectification and
	- distorts minimally the images.
- Knowledge of camera intrinsic parameters helps the rectification.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Geometry of rectification

重

Rectification: a video video

Epipoles transformed to infinity

重

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Rectification: an example

before

after

Hajder, Csetverikov (Faculty of Informatics) [3D Computer Vision](#page-0-0) 44/73

重

メロトメ 御 トメ 君 トメ 君 ト

Benefits of rectifications

- Modify the inage in order to get a standard stereo,
	- \rightarrow then algorithms for standard stereo can be applyied.
- The properties of epipolar geometry can be visualized by rectifying the images.
- For practical purposes, the rectification has to be very accurate
	- otherwise there will be a shift between corresponding rows.
	- \rightarrow feature matching more challenging, 1D cannot be run.

イロト イ押 トイラト イラト

Weak points of rectification

- Distortion under rectification hardly depends on baseline width.
- **•** For wide-baseline stereo:
	- Rectification significantly destorts the image.
	- \rightarrow Pixel-based method can be applied for feature matching
	- \rightarrow Correspondence-based methods often fail.
- Size and shape of rectified images differ from original ones.
	- \rightarrow Feature matching is more challenging.
- \rightarrow Many experts do not agree that rectification is necessary.
	- Epipolar lines can be followed if fundamental matrix is given.
	- Matching can be carried out in original frames.
	- \rightarrow Then noise is not distorted by rectifying transformation.

イロト イ押ト イヨト イヨ

Outline

[Image-based 3D reconstruction](#page-2-0) [Geometry of stereo vision](#page-10-0) **•** [Epipolar geometry](#page-12-0) **• [Essential and fundamental matrices](#page-17-0)** [Estimation of the fundamental matrix](#page-22-0) \bullet [Standard stereo and rectification](#page-34-0) [Triangulation for standard stereo](#page-35-0) \bullet [Retification of stereo images](#page-38-0) 4 [3D reconstruction from stereo images](#page-46-0) **•** [Triangulation and metric reconstruction](#page-48-0) • [Projective reconstruction](#page-58-0) **• [Planar Motion](#page-63-0)** 5 [Summary](#page-70-0)

∋⇒

Types of stereo reconstruction

Fully calibrated reconstruction

- **Known intrinsic and extrinsic** camera parameters
- reconstruction by triangulation
- known baseline → known scale

Metric (Euclidean) reconstruction

- knonw **intrinsic** camera parameters, *n* ≥ 8 point correspondences given
- Extrinsic camera parameters obtained from **essential matrix**
- Reconstruction up to a similarity transformation
- \rightarrow up to a scale

• Projective reconstruction

- **unknown** camera parameters, *n* ≥ 8 point correspondences are given
- Composition of projective matrices from a **fundamental matrix**
- reconstruction can be computed up to a projective transformation

(ロ) (*同*) (ヨ) (ヨ)

Overview

不同 医

Triangulation

- **Task:**
	- Two calibrated cameras are given, including both intrinsic and extrinsic parameters, and
	- Locations $\mathbf{u}_1, \mathbf{u}_2$ of the projection of spatial point **X** are given
	- Goal is to estimate spatial location **X**.
- Two calibration matrices are known, therefore
	- for a projection matrix: **K** [−]¹**P** = [**R**| − **t**] and
	- for calibrated (aka. normalized) coordinates: **p** = **K** [−]¹**u**.
- For the sake of simplicity, the first camera gives the world coordinate system
	- **non-homogeneous** coordinates are used

$$
\rightarrow ~ \mathsf{p}_2 = \mathsf{R}(\mathsf{p}_1 - \mathsf{t}), \mathsf{p}_1 = \mathsf{t} + \mathsf{R}^\mathsf{T} \mathsf{p}_2
$$

- Image points are bask-projected to 3D space
	- two rays obtained, they usually do not intersect each other due to noise/calibration error
	- \rightarrow task is to give an estimate for spatial poi[nt](#page-48-0) **X**[.](#page-50-0)

不重 的人

4 0 8

Linear triangulation: geometry

- Line X_1X_2 perpendicular to both r_1 and r_2 .
- Estimate **X** is the middle point of section X_1X_2
- \bullet Vector **w** is parallel to X_1X_2 .

Linear triangulation: notations

• α **p**₁ is a point on ray **r**₁ ($\alpha \in \Re$) $\mathbf{t} + \beta R^{\mathsf{T}} \mathbf{p}_2$ a point on other ray \mathbf{r}_2 $(\beta \in \Re)$ \rightarrow coordinate system fixed to the first camera

• Let
$$
\mathbf{X}_1 = \alpha_0 \mathbf{p}_1
$$
, $\mathbf{X}_2 = \mathbf{t} + \mathbf{R}^\mathsf{T}(\beta_0 \mathbf{p}_2 - \mathbf{t})$

イロト イ押ト イヨト イヨ

Linear triangulation: solution

- Task is to determine
	- the middle point of the line section X_1X_2
	- \rightarrow determination of α_0 and β_0 required
- **•** Remark that
	- Vector $w = p_1 \times \mathbf{R}^{T} (p_2 t)$ perpendicular to both r_1 and r_2 .
	- **•** Line α **p**₁ + γ **w** parallel to **w** and contain the point α **p**₁ ($\gamma \in \Re$).
- $\rightarrow \alpha_0, \beta_0$ (as well as γ_0) are given by the solution of the following linear system: :

$$
\alpha \boldsymbol{p}_1 + \boldsymbol{t} + \beta \boldsymbol{R}^T (\boldsymbol{p}_2 - \boldsymbol{t}) + \gamma [\boldsymbol{p}_1 \times \boldsymbol{R}^T (\boldsymbol{p}_2 - \boldsymbol{t})] = 0 \qquad \qquad (7)
$$

- **•** Triangulated point is obtained, e.g by α_0 **p**₁
- There is no solution if r_1 and r_2 are parallel

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Linear triangulation: an algebraic solution

Two projected locations of spatial point **X** are given:

$$
\lambda_1 \mathbf{u}_1 = \mathbf{P}_1 \mathbf{X}
$$

$$
\lambda_2 \mathbf{u}_2 = \mathbf{P}_2 \mathbf{X}
$$

 $\bullet \lambda_1$ and λ_2 can be eliminated. 2 + 2 equations are obtained:

$$
\begin{aligned}\n\boldsymbol{\mathsf{u}} \mathsf{p}_3^T \mathsf{X} &= \mathsf{p}_1^T \mathsf{X} \\
\boldsymbol{\mathsf{v}} \mathsf{p}_3^T \mathsf{X} &= \mathsf{p}_2^T \mathsf{X}\n\end{aligned}
$$

- where $\mathbf{p}_i^{\mathcal{T}}$ is the i-th row of projection matrix \mathbf{P} .
- Both projections yield 2 equations. Only vector **X** is unknown. \bullet
- Solution for **X** is calculated by solving the homogeneous linear system of equations.
- Important remark: solution is obtained in homogeneous coordinates. イロト イ押 トイラト イラト

Refinement by minimizing the reprojection error

- Linear algorithm yield points \mathbf{X}_i , $i=1,2,\ldots,n$ if n point pairs are given
- The solution should be refined
	- minimization of **reprojection error** yields **more accurate** estimate
- For minimizing the reprojection error, the following parameters have to be refined:
	- Spatial points **X***ⁱ*
	- Rotation matrix **R** and baseline vector **t**
	- \rightarrow intrinsic camera parameters are usually fixed as cameras are pre-calibrated
- Initial values for numerical optimization
	- Spatial points **X***ⁱ* from linear triangulation
	- Initial rotation matrix **R** and baseline vector **t** by decomposing the essential matrix

イロト イ押 トイラト イラトー

Metric reconstruction by decomposing the essential matrix

- **•** Intrinsic camera matrices **K**₁ and **K**₂ given, fundamental matrix computed from *n* ≥ 8 point correpondences
	- **E** can be retrieved from **F**, K_1 and K_2 .
	- **•** from **E**, extrinsic parameters can be obtained by decomposition
- Unknown baseline −→ unknown scale
	- **•** baseline normalized to 1
	- \rightarrow Euclidean reconstruction possible up to a similarity transformation
- It is assumed that world coordinate is fixed to the first camera
	- \rightarrow Therefore, $P_1 = [1|\mathbf{0}]$, where I is the identity matrix
- Position of second camera computed from essential matrix **E** by SVD.
	- Four solutions obtained,
	- only one is correct.

в

イロト イ押ト イヨト イヨトー

Camera pose estimation by SVD

- The Singular Value Decompoisition of $\boldsymbol{\mathsf{E}}$ is $\boldsymbol{\mathsf{E}} = \boldsymbol{\mathsf{UDV}}^\intercal,$ where $\mathbf{D} = \text{diag}(\delta, \delta, 0)$
	- \rightarrow **E** has two equal singuar values
- Four solutions can be obtained as follows:

$$
\begin{aligned} \mathbf{R}_1 &= \mathbf{U}\mathbf{W}\mathbf{V}^{\mathsf{T}} & \mathbf{R}_2 &= \mathbf{U}\mathbf{W}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}} \\ [\mathbf{t}_1]_{\times} &= \delta\mathbf{U}\mathbf{Z}\mathbf{U}^{\mathsf{T}} & [\mathbf{t}_2]_{\times} &= -\delta\mathbf{U}\mathbf{Z}\mathbf{U}^{\mathsf{T}} \end{aligned}
$$

• where

$$
\mathbf{W} \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{Z} \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

- Combination of 2-2 candidates for translation and rotation yield 4 solutions.
- **■** Determinants of **R**₁ and **R**₂ have to be positive, otherwise matrices should be multiplied by -1 . イロト イ押ト イヨト イヨト Ω

Visualization of the four solutions

- Left and right: camera locations replaces
- Top and bottom: mirror to base lane
- 3D point is in front of the cameras only in the top-left case.

重き イヨネ

 -100 \leftarrow \leftarrow \leftarrow

Overview

B K

Projective reconstruction based on fundamental matrix

- Unknown intrinsic parameters, *n* ≥ 8 known point correspondences
- Reconstruction can be obtained up to a projective transformation.
	- If **H** is a 4 \times 4 projective transformation, then $P_kX = (P_kH)(H^{-1}X)$, $k = 1, 2$
	- \rightarrow if $\mathbf{u}_1 \leftrightarrow \mathbf{u}_2$ are projections of **X** by P_k , then $\mathbf{u}_1 \leftrightarrow \mathbf{u}_2$ are those of $H^{-1}X$ by P_kH .
	- \rightarrow From fundamental matrix **F**, matrices **P**_{*k*} can be computed up to the transformation **H**
- There is a matrix **H** to get the canonical form for **P**¹ as

 \bullet **P**₁ = [**i**|**0**]

イロト イ押ト イヨト イヨトー

Summary of calibrated and uncalibrated 3D vision

в

(ロトイ部)→(差)→(差)→

Correction of projective reconstruction

Metric reconstruction is the subset of projective reconstruction

- How can projective tranformation **H** be computed?
- What kind of knowledge is required for correction?
- (*Direct*) method
	- 3D locations of five points must be known.
	- \rightarrow **H** can be estimated: $\mathbf{X}_m = \mathbf{H}^{-1} \mathbf{X}_p$
- (*Stratified*) method
	- Parallel and perpendicular lines
	- Projective \longrightarrow affine \longrightarrow metric
	- \rightarrow For an affine reconstruction, **H** is an affinity

4 5 8 4 5 8 4 5

Data for correction of projective reconstruction: a video

4 ロ ト 4 何 ト 4 ヨ ト 4

- **•** Parallel and
- **•** perpendicular lines

Overview

4. B. K.

Planar motion

- A vehicle moves on a planar road.
- **It can be rotated and translated.**
- Coordinate system fixed to the car, axis *Z* parallel to the road.
- Two frames of the video yields a stereo problem.
- Vehicle is rotated, due to steering, around axis *Y* by angle β.
- **•** Translation is in plane XZ : its direction represented by angle α .

$$
\mathbf{t} = \begin{bmatrix} t_x \\ 0 \\ t_z \end{bmatrix} = \rho \begin{bmatrix} \cos \alpha \\ 0 \\ \sin \alpha \end{bmatrix}, \qquad \mathbf{R} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}
$$

i katika masuk

Planar motion: essential matrix

• Furthermore

$$
\mathbf{t} = \rho \begin{bmatrix} \cos \alpha \\ 0 \\ \sin \alpha \end{bmatrix} \rightarrow [\mathbf{t}]_X = \rho \begin{bmatrix} 0 & -\sin \alpha & 0 \\ \sin \alpha & 0 & -\cos \alpha \\ 0 & \cos \alpha & 0 \end{bmatrix}
$$

• Then the essential matrix is as follows:

$$
\mathbf{E} = [\mathbf{t}] \times \mathbf{R} \sim \begin{bmatrix} 0 & -\sin \alpha & 0 \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & 0 & \sin \alpha \sin \beta - \cos \alpha \cos \beta \\ 0 & \cos \alpha & 0 \end{bmatrix}
$$

Planar motion: essential and fundamental matrices

• After applying trigonometric equalities:

$$
\mathbf{E} \sim \left[\begin{array}{ccc} 0 & -\sin \alpha & 0 \\ \sin(\alpha+\beta) & 0 & -\cos(\alpha+\beta) \\ 0 & \cos \alpha & 0 \end{array} \right]
$$

• If camera intrinsic matrices are the same for the images, and the common matrix is a so-called semi-calibrated one: $K = diag(f, f, 1)$, then

$$
\mathbf{F} = \mathbf{K}^{-T} \mathbf{E} \mathbf{K}^{-1} \sim \begin{bmatrix} 0 & -\frac{\sin \alpha}{f^2} & 0 \\ \frac{\sin(\alpha+\beta)}{f^2} & 0 & -\frac{\cos(\alpha+\beta)}{f} \\ 0 & \frac{\cos \alpha}{f} & 0 \end{bmatrix}
$$

Planar motion: estimation

- Only four out of nine elements in fundamental/essential matrices are nonzero.
	- Essental matrix can be estimated by two point correspondences.
	- Semi-calibrated camera: three correspondences.
- Robustification, e.g. by RANSAC, is fast
- Equation from one correspondence $\mathbf{p}_1 = [u_1, v_1], \mathbf{p}_2 = [u_2, v_2]$ for two angles α and β (calibrated case):

$$
\langle [\mathbf{v}_1, -\mathbf{u}_2 \mathbf{v}_1, -\mathbf{v}_2, \mathbf{v}_2 \mathbf{u}_1]^T, [\cos \alpha, \sin \alpha, \cos(\alpha + \beta), \sin(\alpha + \beta)]^T \rangle = 0
$$

For multiple correspondences, solution can be written as

$$
\boldsymbol{A}_1 \boldsymbol{v}_1 + \boldsymbol{A}_2 \boldsymbol{v}_2 = 0
$$

where $\mathbf{v}_1 = [\cos\alpha, \sin\alpha]^T$ and $\mathbf{v}_2 = [\cos(\alpha+\beta), \sin(\alpha+\beta)]^T$

REVIEW B

Planar motion: estimation

• Thus,
$$
\mathbf{v}_1^T \mathbf{v}_1 = \mathbf{v}_2^T \mathbf{v}_2 = 1
$$
.

• Furthermore,

$$
\mathbf{A}_1 \mathbf{v}_1 + \mathbf{A}_2 \mathbf{v}_2 = 0 \tag{8}
$$

$$
\mathbf{A}_1 \mathbf{v}_1 = -\mathbf{A}_2 \mathbf{v}_2 \tag{9}
$$

$$
\mathbf{v}_1 = -\mathbf{A}_1^\dagger \mathbf{A}_2 \mathbf{v}_2 \tag{10}
$$

4 0 8 4 6 8 4 9 8 4 9 8 1

$$
\mathbf{v}_1^T \mathbf{v}_1 = \mathbf{v}_2^T \left(\mathbf{A}_1^{\dagger} \mathbf{A}_2 \right)^T \left(\mathbf{A}_1^{\dagger} \mathbf{A}_2 \right) \mathbf{v}_2 = 1 \tag{11}
$$

$$
\mathbf{v}_2^T \mathbf{B} \mathbf{v}_2 = 1 \tag{12}
$$

• If
$$
\mathbf{B} = (\mathbf{A}_1^{\dagger} \mathbf{A}_2)^T (\mathbf{A}_1^{\dagger} \mathbf{A}_2)
$$

 \bullet Thus, \mathbf{v}_2 is given by the intersection of an ellipse and the unit-radius circle as $\mathbf{v}_2 \mathbf{B} \mathbf{v}_2 = \mathbf{v}_2^T \mathbf{v}_2 = 1$.

в

Planar motion: estimation

Solution is given by Singular Value Decomposition: $\mathbf{B} = \mathbf{U}^T \mathbf{S} \mathbf{U}$. Let $\mathbf{r} = [r_x \quad r_y]^T = \mathbf{U} \mathbf{v}_2$.

$$
\mathbf{v}_2^T \mathbf{B} \mathbf{v}_2 = 1 \tag{13}
$$

$$
\mathbf{v}_2^T \mathbf{U}^T \mathbf{S} \mathbf{U} \mathbf{v}_2 = 1 \tag{14}
$$

$$
\mathbf{r}_2^T \mathbf{S} \mathbf{r}_2 = 1 \tag{15}
$$

$$
\mathbf{r}_2^T \left[\begin{array}{cc} s_1 & 0 \\ 0 & s_2 \end{array} \right] \mathbf{r}_2 = 1 \tag{16}
$$

• Therefore,
$$
s_1 r_x^2 + s_2 r_y^2 = 1
$$

- and $r_x^2 + r_y^2 = 1$
- \rightarrow Linear system for $r_{\sf x}^2$ and $r_{\sf y}^2$. (Four candidate solutions, similarly to general stereo vision.)
- $\mathbf{v}_2 = \mathbf{U}^T \mathbf{r}$ and $\mathbf{v}_1 = -\mathbf{A}_1^{\dagger} \mathbf{A}_2 \mathbf{v}_2$ gives final solution.

Outline

[Image-based 3D reconstruction](#page-2-0) [Geometry of stereo vision](#page-10-0) **•** [Epipolar geometry](#page-12-0) **• [Essential and fundamental matrices](#page-17-0) •** [Estimation of the fundamental matrix](#page-22-0) [Standard stereo and rectification](#page-34-0) [Triangulation for standard stereo](#page-35-0) \bullet [Retification of stereo images](#page-38-0) 4 [3D reconstruction from stereo images](#page-46-0) **•** [Triangulation and metric reconstruction](#page-48-0) [Projective reconstruction](#page-58-0) \bullet [Planar Motion](#page-63-0) **[Summary](#page-70-0)**

Summary

- [Image-based 3D reconstruction](#page-2-0)
	- [Geometry of stereo vision](#page-10-0)
		- **•** [Epipolar geometry](#page-12-0)
		- **[Essential and fundamental matrices](#page-17-0)**
		- **•** [Estimation of the fundamental matrix](#page-22-0)
	- [Standard stereo and rectification](#page-34-0)
		- **•** [Triangulation for standard stereo](#page-35-0)
		- [Retification of stereo images](#page-38-0)
- 4 [3D reconstruction from stereo images](#page-46-0)
	- **•** [Triangulation and metric reconstruction](#page-48-0)
	- [Projective reconstruction](#page-58-0)
	- **[Planar Motion](#page-63-0)**

Summarv

不同 医
References

- R.Hartley, A.Zisserman: "Multiple View Geometry in Computer Vision", Cambridge University Press
- M.Sonka, V.Hlavac, R.Boyle: "Image Processing, Analysis and Machine Vision", Thomson
- Y. Ma, S. Soatto, J. Kosecka, S. Shankar Sastry: "An Invitation to 3-D Vision", Springer
- D.A. Forsyth, J. Ponce: "Computer Vision: a modern approach", Prentice Hall
- E. Trucco, A. Verri: "Introductory Techniques for 3-D Computer Vision", Prentice Hall
- Kató Zoltán, Czúni László: "Számítógépes látás"
	- tananyagfejlesztes.mik.uni-pannon.hu/

イロト イ押 トイラト イラトー