Computer Vision

Levente Hajder, Dmitry Chetverikov

Eötvös Loránd University, Faculty of Informatics

Hajder, Csetverikov (Faculty of Informatics)

Basics of Stereo Vision

- Image-based 3D reconstruction
- Geometry of stereo vision
 - Epipolar geometry
 - Essential and fundamental matrices
 - Estimation of the fundamental matrix
- Standard stereo and rectification
 - Triangulation for standard stereo
 - Retification of stereo images
- 4 3D reconstruction from stereo images
 - Triangulation and metric reconstruction
 - Projective reconstruction
 - Planar Motion

5 Summary

★ ∃ >

Outline

Image-based 3D reconstruction Triangulation for standard stereo Triangulation and metric reconstruction Planar Motion

Single, calibrated image 1/2

- Depth cannot be measured
 - at least two cameras required for depth estimation.
- Surface normal can be estimated
 - integration of normals \longrightarrow surface
 - sensitive to depth change
- Surface normal estimation possible in smooth, textureless surfaces
 - shape from shading
 - intensity change \longrightarrow surface normal
 - less robust
 - reconstruction ambiguity

A (10) A (10)

Single, calibrated image 2/2

- Texture-change in a smooth, regularly-textured surface
 - shape from texture
 - texture change \longrightarrow surface normal
 - less robust
- Illumination change
 - photometric stereo
 - more light sources \longrightarrow surface normal
 - robust, but ambiguity can present
 - high, finer details
 - 3D position is less accurate
- Special scenes
 - e.g. parallel and perpendicular lines
 - $\bullet \ \rightarrow \text{buildings, rooms, } \ldots$
 - applicability is limited

A (10) A (10)

Stereo vision illustration

- For reconstructing a 3D scene,
 - at least two, calibrated images required.
 - and point correspondences given in the images.
- The process is called triangulation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Standard stereo

- Same calibrated cameras applied for taking the images
- Optical axes are parallel
- Planes of images are the same, as well as lower and upper border lines
- Baseline between focal points is small
 - narrow baseline
- Operating principles
 - · correspondences obtained by maching algorithms
 - depth estimation by triangulation
- Following parameters have to know for triangulation:
 - baseline b
 - focal length f
 - disparity d
- Disparity: point location difference between images

Geometry of standard stereo

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Wide-baseline stereo

- Calibrated camera(s)
 - two images taken from different viewpoints
- Baseline is larger
 - wide baseline
- Benefits over standard stereo
 - larger disparities
 - \rightarrow more accurate depth estimation
- Disadvantages
 - geometric distortion in images are larger
 - more occlusions
 - \rightarrow point maching is more difficult

A (10) A (10)

Example for narrow/wide baseline stereo

- Points P and Q are on the same projective ray
 - \rightarrow First cameras are the same
- $d_{
 m WBL} \gg d_{
 m NBL}$
 - \rightarrow more accurate estimation for WBL
- d_{NBL} is very small
 - more correspondences
 - $\rightarrow \,$ rounding noise
 - \rightarrow depth is layered

< 回 > < 三 > < 三 >

Outline

correspondence-based stereo vision

- Image-based 3D algorithms usually exploit point correspondences in images
 - Pattern matching in images is a challenging task
- $\bullet \mbox{ Less DoF} \longrightarrow \mbox{faster, more robust solutions}$
 - ightarrow geometric constraint should be applied
- Epipolar geometry \longrightarrow epipolar constraint
 - epipolar lines correspond to each other
 - 2D search \rightarrow 1D-s search
- Stereo geometry
 - uncalibrated cameras \longrightarrow fundamental matrix
 - $\bullet\,$ calibrated cameras $\longrightarrow essential\,\,matrix$
 - image rectification \longrightarrow 1D matching

3

Overview

Geometry of stereo vision

- **Baseline C**₁**C**₂ connects two focal points.
- Baselines intersect image planes at epipoles.
- Two focal points and the spatial point X defines epipolar plane.

< <p>A < </p>

Geometry of stereo vision: a video

- Point X lies on line on ray back-projected using the point in the first image
- Point in the second image, corresponding to u₁, lies on an epipolar line
 - ightarrow epipolar constraint
- Line **u**₁**e**₁ is the related epipolar line in the first image.

< 3 > <

Epipolar geometry

- Each plane, containing the baseline, is an epipolar plane
- Epipolar plane π intersects the images at lines I_1 and I_2 .
 - \rightarrow Two epipolar lines correspond to each other.

< ロ > < 同 > < 回 > < 回 >

Epipolar geometry

Epipolar geometry: video

- Epipolar plane 'rotates' around the baseline.
- Each epipolar line contains epipole(s).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

Calibrated cameras: essential matrix 1/2

- Calibration matrix **K** is known, rotation **R** and translation **t** between coordinate systems are unknown.
- Lines C_1u_1 , C_2u_2 , C_1C_2 lay within the same plane:

$$\mathbf{C}_2\mathbf{u}_2\cdot[\mathbf{C}_1\mathbf{C}_2\times\mathbf{C}_1\mathbf{u}_1]=0$$

A (10) A (10)

Calibrated cameras: essential matrix 2/2

 In the second camera system, the following equation holds if homogeneous coordinates are used:

$$\mathbf{u}_2 \cdot [\mathbf{t} \times \mathbf{R} \mathbf{u}_1] = \mathbf{0}$$

• Using the essential matrix E (Longuet-Higgins, 1981):

$$\mathbf{u}_{2}^{\mathsf{T}}\mathbf{E}\mathbf{u}_{1}=\mathbf{0},\tag{1}$$

where essential matrix is defined as

$$\mathbf{E} \doteq [\mathbf{t}]_{\times} R \tag{2}$$

• [a] × is the cross-product matrix:

$$\mathbf{a} imes \mathbf{b} = [\mathbf{a}]_{ imes} \mathbf{b} \doteq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Properties of an essential matrix

- The equation u^T₂Eu₁ = 0 is valid if the 2D coorinates are normalized by K.
 - Normalized camera matrix: $\mathbf{P} \longrightarrow \mathbf{K}^{-1}\mathbf{P} = [\mathbf{R}| \mathbf{t}]$
 - \rightarrow Normalized coordinates: $\mathbf{u} \longrightarrow \mathbf{K}^{-1}\mathbf{u}$
- Matrix $\mathbf{E} = [\mathbf{t}]_{\times} R$ has 5 degree of freedom (DoF).
 - $3(\mathbf{R}) + 3(\mathbf{t}) 1(\lambda)$
 - λ: (scalar unambigity)
- Rank of essential matrix is 2.
 - E has two equal, non-zero singular value.
- Matrix E can be decomposed to translation and rotation by SVD.
 - translation is up to an unknown scale
 - sign of t is also ambiguous

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Uncalibrated case: fundamental matrix

• Longuet-Higgins formula in case of uncalibrated cameras

$$\mathbf{u}_2^{\mathsf{T}} \mathbf{F} \mathbf{u}_1 = \mathbf{0}, \tag{3}$$

where the fundamental matrix is defined as

$$\mathbf{F} \doteq \mathbf{K}_2^{-\mathsf{T}} \mathbf{E} \mathbf{K}_1^{-1} \tag{4}$$

- \mathbf{u}_1 and \mathbf{u}_2 are unnormalized coordinates.
- Matrix **F** has 7 DoF.
- Rank of F is 2
 - Epipolar lines intersect each other in the same points
 - det $\mathbf{F} = \mathbf{0} \longrightarrow \mathbf{F}$ cannot be inverted, it is non-singular.
- Epipolar lines: $I_1 = F^T u_2$, $I_2 = F u_1$
- Epipoles: $\mathbf{F}\mathbf{e}_1 = \mathbf{0}, \, \mathbf{F}^T \mathbf{e}_2 = \mathbf{0}^T$

Overview

★ ∃ > < ∃ >

Estimation of fundamental matrix

• We are given *N* point correspondences:

 $\{\mathbf{u}_{1i}\leftrightarrow\mathbf{u}_{2i}\}, i=1,2,\ldots,N$

- Degree of freedom for **F** is 7 : $\longrightarrow N \ge$ 7 required
- Usually, $N \ge 8$. (Eight-point method)
- If correspondences are contaminated \longrightarrow robust estimation needed
- In case of outliers: $N \gg 7$
- Basic equation: $\mathbf{u}_{2i}^{\mathsf{T}}\mathbf{F}\mathbf{u}_{1i} = 0$
- Goal is to find the singular matrix closest to F.

Eight-point method

Input:N point correspondences $\{\mathbf{u}_{1i} \leftrightarrow \mathbf{u}_{2i}\}, N \ge 8$ Output:fundamental matrix **F**

Algoritmus: Normalized 8-point method

- Data-normalization is separately carried out for the two point set:
 - translation
 - scale
- 2 Estimating $\hat{\mathbf{F}}'$ for normalized data
 - (a) Linear solution by SVD $\longrightarrow \hat{\mathbf{F}'}$
 - (b) Then singularity constraint det $\hat{\mathbf{F}'} = 0$ is forced $\longrightarrow \hat{\mathbf{F}'}$
- Denormalization
 - $\hat{\mathbf{F}'} \longrightarrow \mathbf{F}$

Data normalization and denormalization

- Goal of data normalization: numerical stability
 - Obligatory step: non-normalized method is not reliable.
 - Components of coefficient matrix should be in the same order of magnitude.
- Two point-sets are normalized by affine transformations **T**₁ and **T**₂.
 - Offset: origin is moved to the center(s) of gravity
 - Scale: average of point distances are scaled to be $\sqrt{2}$.
- Denormalization: correction by affine tranformations:

$$\hat{\mathbf{F}} = \mathbf{T}_2^T \hat{\mathbf{F}}' \mathbf{T}_1 \tag{5}$$

< 回 > < 三 > < 三 >

Homogeneous linear system to estimate F

- For each point correspondence: $\mathbf{u}_2^{\mathsf{T}}\mathbf{F}\mathbf{u}_1 = 0$, where $\mathbf{u}_k = [u_k, v_k, 1]^{\mathsf{T}}, k = 1, 2$
- $\rightarrow\,$ For element of the fundamental matrix, the following equation is valid:

 $u_2u_1f_{11} + u_2v_1f_{12} + u_2f_{13} + v_2u_1f_{21} + v_2v_1f_{22} + v_2f_{23} + u_1f_{31} + v_1f_{32} + f_{33} = 0$

If notation f = [f₁₁, f₁₂,..., f₃₃]^T is introduced, the equation can be written as a dot product:

$$[u_2u_1, u_2v_1, u_2, v_2u_1, v_2v_1, v_2, u_1, v_1, 1]\mathbf{f} = 0$$

• For all *i*: $\{\mathbf{u}_{1i} \leftrightarrow \mathbf{u}_{2i}\}$

 $\boldsymbol{A}\mathbf{f} \doteq \begin{bmatrix} u_{21}u_{11} & u_{21}v_{11} & u_{21} & v_{21}u_{11} & v_{21}v_{11} & v_{21} & u_{11} & v_{11} & 1\\ \vdots & \vdots\\ u_{2N}u_{1N} & u_{2N}v_{1N} & u_{2N} & v_{2N}u_{1N} & v_{2N}v_{1N} & v_{2N} & u_{1N} & v_{1N} & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Sulution as homogeneous linear system of equations

- Estimation is similar to that of **homography**.
- Trivial solution $\mathbf{f} = \mathbf{0}$ has to be excluded.
 - vector f can be computed up to a scale
 - $\rightarrow~vector~norm$ is fixed as $\|\boldsymbol{f}\|=1$
- If rank $\mathbf{A} \leq \mathbf{8}$
 - rank A = 8 → exact solution: nullvector
 - $\bullet~{\sf rank}~{\bm A}<8\longrightarrow$ solution is linear combination of nullvectors
- For noisy correspondences, rank **A** = 9.
 - optimal solution for algebraic error $\|\mathbf{Af}\|$
 - $\bullet \ \| f \| = 1 \longrightarrow \text{minimization of } \| A f \| / \| f \|$
 - $\rightarrow\,$ optimal solution is the eigenvector of $\mathbf{A}^T\mathbf{A}$ corresponding to the smallest eigenvalue
- Solution can also be obtained from SVD of A:
 - $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}} \longrightarrow \text{last column (vector) of } \mathbf{V}.$

3

イロン イ理 とく ヨン イヨン

Singular constraint

- If det $\mathbf{F} \neq \mathbf{0}$
 - epipolar lines do not intersect each other in epipole.
 - $\rightarrow~$ less accurate epipolar geometry \longrightarrow less accurate reconstruction
- Solution of homogeneous linear system does not guarantee singularity: det $\widehat{\textbf{F}} \neq 0.$
- Task is to find matrix $\widehat{\mathbf{F}}'$, for which
 - Frobenius norm $\|\widehat{\mathbf{F}} \widehat{\mathbf{F}}'\|$ is minimal, and
 - det $\widehat{F}' = 0$

• SVD of \mathbf{A} : $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$

- D = diag(δ₁, δ₂, δ₃) is the diagonal matrix containing singular values, and δ₁ ≥ δ₂ ≥ δ₃
- The estimation for closest matrix, fulfilling singularity constraint:

$$\widehat{\boldsymbol{F}}' = \boldsymbol{\mathsf{U}} \operatorname{diag}(\delta_1, \delta_2, \mathbf{0}) \boldsymbol{\mathsf{V}}^{\mathsf{T}}$$
(6)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Epipoles from fudamental matrix F

- The epipoles are the null-vectors of ${\bf F}$ and ${\bf F}^T {\bf :} {\bf Fe}_1 = {\bf 0},$ and ${\bf F}^T {\bf e}_2 = {\bf 0}.$
- Nullvector can be calculated by e.g. SVD.
- Singularity constraint guarantees that **F** has a null-vector
- Singular Value Decomposition: $\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$, and then
 - e₁: last column of V.
 - e₂: last column of U.

э

Limits of eight-point method

Similar to homography/projective matrix estimation

- Significant difference: singularity constraint introduces
- \rightarrow Similar benefits/weak points to homography/proj. matrix estimation
- Method is not robust
 - RANSAC-like robustification can be applied.
- There are another solution
 - Seven-point method: determinant constraint is forced to linear combination of null-spaces.

A (10) A (10)

Non-linear methods to estimate F

- Algebraic error
 - It yields initial value(s) for numerical optimization.
- Geometric error
 - line-point distance

$$\epsilon = \frac{\mathbf{x'}^T \mathbf{F} \mathbf{x}}{\left| \mathbf{F} \mathbf{x} \right|_{1:2}}$$

Symmetric version

$$\epsilon = \frac{\mathbf{x'}^{T} \mathbf{F} \mathbf{x}}{|\mathbf{F} \mathbf{x}|_{1:2}} + \frac{\mathbf{x}^{T} \mathbf{F}^{T} \mathbf{x'}}{|\mathbf{F}^{T} \mathbf{x'}|_{1:2}}$$

- where operator (x)_{1:2} denotes the first two coordinates of vector x.
- Geometric error minimized by numerical techniques.

Estimation of epipolar geometry: 1st example

KLT feature points #1

KLT feature points #2

epipolar lines #1

epipolar lines #2

Estimation of epipolar geometry: 2nd example

Outline

Overview

Geometry of standard stereo

Precision of depth estimation

- If $d \rightarrow 0$, and $Z \rightarrow \infty$
 - Disparity of distant points are small.
- Relation between disparity and precision of depth estimation

$$\frac{|\Delta Z|}{Z} = \frac{|\Delta d|}{|d|}$$

- larger the disparity, smaller the relative depth error
- \rightarrow precision is increasing
- Influence of base length

$$d = \frac{bf}{Z}$$

- For larger b, same depth value yields larger disparity
- \rightarrow Precision of depth estimation increasing
- \rightarrow more pixels \rightarrow precision of diparity increasing

Retification of stereo images

Overview

★ ∃ > < ∃ >

Retification of stereo images

Goals of rectification

- Input of rectification: non-standard stereo image pair
- Goal of rectification: make stereo matching more accurate
 - After rectification, corresponding pixels are located in the same row
 - \rightarrow standard stereo, 1D search
- Rectification based on epipolar geometry
 - Images are transformed based on epipolar geometry
 - $\rightarrow\,$ after transformation, corresponding epipolar lines are placed on the same rows
 - \rightarrow epipoles are in the infinity
- For rectification, only the fundamental matrix has to be known
 - \rightarrow Fundamental matrix represents epipolar geometry

Rectification methods

- Only the general principles are discussed here.
 - Rectification is a complex method.
 - Rectification **is not required**, it has both advantages and disadvantages.
- Rectification can be carried out by homographies.
- It has ambiguity: there are infinite number of rectification transformations for the same image pair.
- The aim is to find a 2D projective transformation that
 - fulfills the requirement for rectification and
 - distorts minimally the images.
- Knowledge of camera intrinsic parameters helps the rectification.

Geometry of rectification

Rectification: a video video

Epipoles transformed to infinity

Hajder, Csetverikov (Faculty of Informatics)

3D Computer Vision

æ

イロン イ理 とく ヨン イヨン

Retification of stereo images

Rectification: an example

before

after

Hajder, Csetverikov (Faculty of Informatics)

3D Computer Vision

æ

イロン イ理 とく ヨン イヨン

Benefits of rectifications

- Modify the inage in order to get a standard stereo,
 - $\rightarrow\,$ then algorithms for standard stereo can be applyied.
- The properties of epipolar geometry can be visualized by rectifying the images.
- For practical purposes, the rectification has to be very accurate
 - otherwise there will be a shift between corresponding rows.
 - $\rightarrow\,$ feature matching more challenging, 1D cannot be run.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weak points of rectification

- Distortion under rectification hardly depends on baseline width.
- For wide-baseline stereo:
 - Rectification significantly destorts the image.
 - \rightarrow Pixel-based method can be applied for feature matching
 - \rightarrow Correspondence-based methods often fail.
- Size and shape of rectified images differ from original ones.
 - \rightarrow Feature matching is more challenging.
- \rightarrow Many experts do not agree that rectification is necessary.
 - Epipolar lines can be followed if fundamental matrix is given.
 - Matching can be carried out in original frames.
 - \rightarrow Then noise is not distorted by rectifying transformation.

< ロ > < 同 > < 回 > < 回 >

Outline

Epipolar geometry Triangulation for standard stereo 3D reconstruction from stereo images Triangulation and metric reconstruction Projective reconstruction ۲ Planar Motion

Types of stereo reconstruction

Fully calibrated reconstruction

- Known intrinsic and extrinsic camera parameters
- reconstruction by triangulation
- known baseline \longrightarrow known scale

• Metric (Euclidean) reconstruction

- knonw intrinsic camera parameters, n ≥ 8 point correspondences given
- Extrinsic camera parameters obtained from essential matrix
- Reconstruction up to a similarity transformation
- \rightarrow up to a scale

Projective reconstruction

- unknown camera parameters, n ≥ 8 point correspondences are given
- Composition of projective matrices from a fundamental matrix
- reconstruction can be computed up to a projective transformation

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Overview

Triangulation

- Task:
 - Two calibrated cameras are given, including both intrinsic and extrinsic parameters, and
 - Locations **u**₁, **u**₂ of the projection of spatial point **X** are given
 - Goal is to estimate spatial location X.
- Two calibration matrices are known, therefore
 - for a projection matrix: $\mathbf{K}^{-1}\mathbf{P} = [\mathbf{R}|-t]$ and
 - for calibrated (aka. normalized) coordinates: $\mathbf{p} = \mathbf{K}^{-1}\mathbf{u}$.
- For the sake of simplicity, the first camera gives the world coordinate system
 - non-homogeneous coordinates are used

$$ightarrow \mathbf{p}_2 = \mathbf{R}(\mathbf{p}_1 - \mathbf{t}), \mathbf{p}_1 = \mathbf{t} + \mathbf{R}^{\mathsf{T}}\mathbf{p}_2$$

- Image points are bask-projected to 3D space
 - two rays obtained, they usually do not intersect each other due to noise/calibration error
 - \rightarrow task is to give an estimate for spatial point X.

• = •

Linear triangulation: geometry

- Line $X_1 X_2$ perpendicular to both r_1 and r_2 .
- Estimate X is the middle point of section X1X2
- Vector **w** is parallel to **X**₁**X**₂.

Linear triangulation: notations

α**p**₁ is a point on ray **r**₁ (α ∈ ℜ) **t** + β**R**^T**p**₂ a point on other ray **r**₂ (β ∈ ℜ)
→ coordinate system fixed to the first camera

• Let
$$X_1 = \alpha_0 p_1$$
, $X_2 = t + R^T (\beta_0 p_2 - t)$

Linear triangulation: solution

- Task is to determine
 - the middle point of the line section X1X2
 - \rightarrow determination of α_0 and β_0 required
- Remark that
 - Vector $\mathbf{w} = \mathbf{p}_1 \times \mathbf{R}^T (\mathbf{p}_2 \mathbf{t})$ perpendicular to both \mathbf{r}_1 and \mathbf{r}_2 .
 - Line $\alpha \mathbf{p}_1 + \gamma \mathbf{w}$ parallel to \mathbf{w} and contain the point $\alpha \mathbf{p}_1$ ($\gamma \in \Re$).
- $\to \, \alpha_0, \beta_0$ (as well as γ_0) are given by the solution of the following linear system: :

$$\alpha \mathbf{p}_1 + \mathbf{t} + \beta \mathbf{R}^{\mathsf{T}}(\mathbf{p}_2 - \mathbf{t}) + \gamma [\mathbf{p}_1 \times \mathbf{R}^{\mathsf{T}}(\mathbf{p}_2 - \mathbf{t})] = 0$$
(7)

- Triangulated point is obtained, e.g by α₀p₁
- There is no solution if \mathbf{r}_1 and \mathbf{r}_2 are parallel

A (10) A (10)

Linear triangulation: an algebraic solution

• Two projected locations of spatial point X are given:

$$\lambda_1 \mathbf{u}_1 = \mathbf{P}_1 \mathbf{X}$$
$$\lambda_2 \mathbf{u}_2 = \mathbf{P}_2 \mathbf{X}$$

• λ_1 and λ_2 can be eliminated. 2 + 2 equations are obtained:

$$u\mathbf{p}_3^T\mathbf{X} = \mathbf{p}_1^T\mathbf{X}$$
$$v\mathbf{p}_3^T\mathbf{X} = \mathbf{p}_2^T\mathbf{X}$$

- where \mathbf{p}_i^T is the i-th row of projection matrix **P**.
- Both projections yield 2 equations. Only vector **X** is unknown.
- Solution for X is calculated by solving the homogeneous linear system of equations.
- Important remark: solution is obtained in homogeneous coordinates.

Refinement by minimizing the reprojection error

- Linear algorithm yield points X_i, i = 1, 2, ..., n if n point pairs are given
- The solution should be refined
 - minimization of reprojection error yields more accurate estimate
- For minimizing the reprojection error, the following parameters have to be refined:
 - Spatial points X_i
 - $\bullet\,$ Rotation matrix ${\bm R}$ and baseline vector ${\bm t}$
 - $\rightarrow\,$ intrinsic camera parameters are usually fixed as cameras are pre-calibrated
- Initial values for numerical optimization
 - Spatial points **X**_i from linear triangulation
 - Initial rotation matrix **R** and baseline vector **t** by decomposing the essential matrix

Triangulation and metric reconstruction

Metric reconstruction by decomposing the essential matrix

- Intrinsic camera matrices K₁ and K₂ given, fundamental matrix computed from n ≥ 8 point correpondences
 - E can be retrieved from F, K₁ and K₂.
 - from E, extrinsic parameters can be obtained by decomposition
- $\bullet \ \ \text{Unknown baseline} \longrightarrow \text{unknown scale}$
 - baseline normalized to 1
 - ightarrow Euclidean reconstruction possible up to a similarity transformation
- It is assumed that world coordinate is fixed to the first camera
 - \rightarrow Therefore, $P_1 = [I|\mathbf{0}]$, where I is the identity matrix
- Position of second camera computed from essential matrix E by SVD.
 - Four solutions obtained,
 - only one is correct.

3

Camera pose estimation by SVD

- The Singular Value Decomposition of **E** is $\mathbf{E} = \mathbf{U}\mathbf{D}\mathbf{V}^{T}$, where $\mathbf{D} = \text{diag}(\delta, \delta, \mathbf{0})$
 - \rightarrow E has two equal singuar values
- Four solutions can be obtained as follows:

$$\begin{aligned} \mathbf{R}_1 &= \mathbf{U}\mathbf{W}\mathbf{V}^\mathsf{T} & \mathbf{R}_2 &= \mathbf{U}\mathbf{W}^\mathsf{T}\mathbf{V}^\mathsf{T} \\ \mathbf{t}_1]_\times &= \delta\mathbf{U}\mathbf{Z}\mathbf{U}^\mathsf{T} & [\mathbf{t}_2]_\times &= -\delta\mathbf{U}\mathbf{Z}\mathbf{U}^\mathsf{T} \end{aligned}$$

where

$$\mathbf{W} \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{Z} \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- Combination of 2-2 candidates for translation and rotation yield 4 solutions.
- Determinants of R₁ and R₂ have to be positive, otherwise matrices should be multiplied by -1.

Visualization of the four solutions

- Left and right: camera locations replaces
- Top and bottom: mirror to base lane
- 3D point is in front of the cameras only in the top-left case.

3 > < 3 >

Overview

< 3 > 4 3 >

Projective reconstruction based on fundamental matrix

- Unknown intrinsic parameters, n ≥ 8 known point correspondences
- Reconstruction can be obtained up to a projective transformation.
 - If **H** is a 4×4 projective transformation, then $\mathbf{P}_k \mathbf{X} = (\mathbf{P}_k \mathbf{H})(\mathbf{H}^{-1}\mathbf{X})$, k = 1, 2
 - → if $\mathbf{u}_1 \leftrightarrow \mathbf{u}_2$ are projections of **X** by P_k , then $\mathbf{u}_1 \leftrightarrow \mathbf{u}_2$ are those of $\mathbf{H}^{-1}\mathbf{X}$ by $\mathbf{P}_k\mathbf{H}$.
 - $\rightarrow\,$ From fundamental matrix **F**, matrices ${\bf P}_k$ can be computed up to the transformation ${\bf H}$
- There is a matrix \mathbf{H} to get the canonical form for \mathbf{P}_1 as
 - $P_1 = [I|0]$

3

Summary of calibrated and uncalibrated 3D vision

	calibrated case	uncalibrated case
epipolar constraint	$\mathbf{u}_{2}^{T}K_{2}^{-T}EK_{1}^{-1}\mathbf{u}_{1}=0$	$\mathbf{u}_2^T F \mathbf{u}_1 = 0$
fundamental matrix	$E = [t]_{ imes} R$	$F = K_2^{-T} E K_1^{-1}$
epipoles	$EK_{1}^{-1}{f e}_{1}={f 0}$	$F\mathbf{e}_1=0$
	$\mathbf{e}_2^T K_2^{-T} E^T = 0^T$	$\mathbf{e}_2 F^T = 0$
epipolar lines	$I_1 = K_1^{-T} E^T K_2^{-1} u_2$	$I_1 = F^T u_2$
	$I_2 = K_2^{-T} E K_1^{-1} u_1$	$I_2 = F u_1$
reconstruction	metric: X _m	projective: $\mathbf{X}_{p} = H\mathbf{X}_{m}$

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Correction of projective reconstruction

• Metric reconstruction is the subset of projective reconstruction

- How can projective tranformation H be computed?
- What kind of knowledge is required for correction?
- (Direct) method
 - 3D locations of five points must be known.
 - \rightarrow **H** can be estimated: **X**_m = **H**⁻¹**X**_p
- (Stratified) method
 - Parallel and perpendicular lines
 - Projective \longrightarrow affine \longrightarrow metric
 - \rightarrow For an affine reconstruction, **H** is an affinity

A (10) A (10)

Data for correction of projective reconstruction: a video

- Parallel and
- perpendicular lines

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

★ ∃ > < ∃ >

Planar motion

- A vehicle moves on a planar road.
- It can be rotated and translated.
- Coordinate system fixed to the car, axis Z parallel to the road.
- Two frames of the video yields a stereo problem.
- Vehicle is rotated, due to steering, around axis *Y* by angle β .
- Translation is in plane XZ: its direction represented by angle α .

$$\mathbf{t} = \begin{bmatrix} t_x \\ 0 \\ t_z \end{bmatrix} = \rho \begin{bmatrix} \cos \alpha \\ 0 \\ \sin \alpha \end{bmatrix}, \qquad \mathbf{R} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

Planar motion: essential matrix

• Furthermore

$$\mathbf{t} = \rho \begin{bmatrix} \cos \alpha \\ \mathbf{0} \\ \sin \alpha \end{bmatrix} \rightarrow [\mathbf{t}]_X = \rho \begin{bmatrix} \mathbf{0} & -\sin \alpha & \mathbf{0} \\ \sin \alpha & \mathbf{0} & -\cos \alpha \\ \mathbf{0} & \cos \alpha & \mathbf{0} \end{bmatrix}$$

• Then the essential matrix is as follows:

$$\mathbf{E} = [\mathbf{t}]_X \mathbf{R} \sim \begin{bmatrix} 0 & -\sin\alpha & 0\\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & 0 & \sin\alpha\sin\beta - \cos\alpha\cos\beta\\ 0 & \cos\alpha & 0 \end{bmatrix}$$

Planar Motion

Planar motion: essential and fundamental matrices

• After applying trigonometric equalities:

$$\mathbf{E} \sim \begin{bmatrix} \mathbf{0} & -\sin\alpha & \mathbf{0} \\ \sin(\alpha + \beta) & \mathbf{0} & -\cos(\alpha + \beta) \\ \mathbf{0} & \cos\alpha & \mathbf{0} \end{bmatrix}$$

If camera intrinsic matrices are the same for the images, and the common matrix is a so-called semi-calibrated one:
 K = diag(f, f, 1), then

$$\mathbf{F} = \mathbf{K}^{-T} \mathbf{E} \mathbf{K}^{-1} \sim \begin{bmatrix} 0 & -\frac{\sin \alpha}{f^2} & 0\\ \frac{\sin(\alpha+\beta)}{f^2} & 0 & -\frac{\cos(\alpha+\beta)}{f}\\ 0 & \frac{\cos \alpha}{f} & 0 \end{bmatrix}$$

Planar motion: estimation

- Only four out of nine elements in fundamental/essential matrices are nonzero.
 - Essental matrix can be estimated by two point correspondences.
 - Semi-calibrated camera: three correspondences.
- Robustification, e.g. by RANSAC, is fast
- Equation from one correspondence **p**₁ = [*u*₁, *v*₁], **p**₂ = [*u*₂, *v*₂] for two angles *α* and *β* (calibrated case):

$$\left\langle [v_1, -u_2v_1, -v_2, v_2u_1]^T, [\cos\alpha, \sin\alpha, \cos(\alpha+\beta), \sin(\alpha+\beta)]^T \right\rangle = 0$$

For multiple correspondences, solution can be written as

$$\mathbf{A}_1\mathbf{v}_1 + \mathbf{A}_2\mathbf{v}_2 = \mathbf{0}$$

• where $\mathbf{v}_1 = [\cos \alpha, \sin \alpha]^T$ and $\mathbf{v}_2 = [\cos(\alpha + \beta), \sin(\alpha + \beta)]^T$

Planar Motion

Planar motion: estimation

• Thus,
$$\mathbf{v}_1^T \mathbf{v}_1 = \mathbf{v}_2^T \mathbf{v}_2 = 1$$
.

• Furthermore,

$$\mathbf{A}_1 \mathbf{v}_1 + \mathbf{A}_2 \mathbf{v}_2 = \mathbf{0} \tag{8}$$

$$\mathbf{A}_1 \mathbf{v}_1 = -\mathbf{A}_2 \mathbf{v}_2 \tag{9}$$

$$\mathbf{v}_1 = -\mathbf{A}_1^{\dagger}\mathbf{A}_2\mathbf{v}_2 \tag{10}$$

イロト イポト イヨト イヨト

$$\mathbf{v}_1^T \mathbf{v}_1 = \mathbf{v}_2^T \left(\mathbf{A}_1^\dagger \mathbf{A}_2 \right)^T \left(\mathbf{A}_1^\dagger \mathbf{A}_2 \right) \mathbf{v}_2 = 1$$
(11)
$$\mathbf{v}_2^T \mathbf{B} \mathbf{v}_2 = 1$$
(12)

• If
$$\mathbf{B} = \left(\mathbf{A}_1^{\dagger}\mathbf{A}_2\right)^T \left(\mathbf{A}_1^{\dagger}\mathbf{A}_2\right)$$

Thus, v₂ is given by the intersection of an ellipse and the unit-radius circle as v₂Bv₂ = v₂^Tv₂ = 1.

Planar Motion

Planar motion: estimation

Solution is given by Singular Value Decomposition: **B** = **U**^T**SU**.
Let **r** = [*r_x r_y*]^T = **Uv**₂.

$$\mathbf{v}_2^T \mathbf{B} \mathbf{v}_2 = \mathbf{1} \tag{13}$$

$$\mathbf{v}_2^T \mathbf{U}^T \mathbf{S} \mathbf{U} \mathbf{v}_2 = \mathbf{1}$$
(14)

$$\mathbf{r}_2^T \mathbf{S} \mathbf{r}_2 = \mathbf{1} \tag{15}$$

$$\mathbf{r}_2^T \begin{bmatrix} s_1 & 0\\ 0 & s_2 \end{bmatrix} \mathbf{r}_2 = 1 \tag{16}$$

• Therefore,
$$s_1 r_x^2 + s_2 r_y^2 = 1$$

- and $r_x^2 + r_y^2 = 1$
- \rightarrow Linear system for r_x^2 and r_y^2 . (Four candidate solutions, similarly to general stereo vision.)
 - $\mathbf{v}_2 = \mathbf{U}^T \mathbf{r}$ and $\mathbf{v}_1 = -\mathbf{A}_1^{\dagger} \mathbf{A}_2 \mathbf{v}_2$ gives final solution.

Outline

Epipolar geometry Triangulation for standard stereo Triangulation and metric reconstruction Planar Motion Summary

Summary

- Image-based 3D reconstruction
 - Geometry of stereo vision
 - Epipolar geometry
 - Essential and fundamental matrices
 - Estimation of the fundamental matrix
- Standard stereo and rectification
 - Triangulation for standard stereo
 - Retification of stereo images
- 4 3D reconstruction from stereo images
 - Triangulation and metric reconstruction
 - Projective reconstruction
 - Planar Motion

5 Summary

★ ∃ →
References

- R.Hartley, A.Zisserman: "Multiple View Geometry in Computer Vision", Cambridge University Press
- M.Sonka, V.Hlavac, R.Boyle: "Image Processing, Analysis and Machine Vision", Thomson
- Y. Ma, S. Soatto, J. Kosecka, S. Shankar Sastry: "An Invitation to 3-D Vision", Springer
- D.A. Forsyth, J. Ponce: "Computer Vision: a modern approach", Prentice Hall
- E. Trucco, A. Verri: "Introductory Techniques for 3-D Computer Vision", Prentice Hall
- Kató Zoltán, Czúni László: "Számítógépes látás"
 - tananyagfejlesztes.mik.uni-pannon.hu/

3