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Principles of multi-view reconstruction

Possibilities for multi-view reconstruction

1 Concatenation of stereo reconstructions
Complicated
Reconstruction error cummulated

2 N-view solutons
Task is non-linear
Difficult solutions, implementation challenging

3 Reconstrution by simplified camera models
Task is linear if

orthogonal or
weak-perspective projections applied.

Chetverikov, Hajder (ELTE IK) 3D Computer Vision 4 / 44



Reconstruction for orthogonal and weak-perspective projection

Outline

1 Principles of multi-view reconstruction

2 Reconstruction for orthogonal and weak-perspective projection
Tomasi-Kanade factorization

3 Multi-view perspective reconstruction

4 Concatenation of stereo reconstructions

5 Bundle adjustment

6 Tomasi-Kanade factorization with missing data

Chetverikov, Hajder (ELTE IK) 3D Computer Vision 5 / 44



Reconstruction for orthogonal and weak-perspective projection

Orthogonal projection
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]
sp − tf (1)
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Reconstruction for orthogonal and weak-perspective projection

Orthogonal projection

t f
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Projection: origin is the center of gravity.[
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vfp

]
=

[
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Tomasi-Kanade factorization

Tracked (matched across multi-frames) coordinates are stacked in
measurement matrix W.
It can be factorized into two matrices:

W =



u11 u12 · · · u1P
v11 v12 · · · v1P
u21 u22 · · · u2P
v21 v22 · · · v2P
...

...
. . .

...
uF1 uF2 · · · uFP
vF1 vF2 · · · vFP


=



rT
11

rT
12

rT
21

rT
22
...

rT
F1

rT
F2


[

s1 s2 . . . sP
]

W = MS
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Tomasi-Kanade factorization

As W = MS, the rank of W cannot exceed 3 (noiseless-case).
Size of M is 2F × 3
Size of S is 3× P
Lemma: After factorization, the rank cannot inrease

Rank reduction of W by Singular Value Decomposition (SVD)
Largest 3 singular values/vectors are kept, other ones are set to
zero.
W = USVT →W = U′S′V′T

S =


σ1 0 0 0 . . .
0 σ2 0 0 . . .
0 0 σ3 0 . . .
0 0 0 σ4 . . .
...

...
...

...
. . .

→ S′ =

 σ1 0 0
0 σ2 0
0 0 σ3


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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Ambiguity of factorization

Infinite number of solutions exist:

W = MS =
(

MQ−1
)

(QS) ,

where Q is a 3× 3 (affine) matrix.
Maff = MQ−1: affine motion.
Saff = QS affine structure.
Constraint to resolve ambiguity: motion vectors ri are orthnormal.

Camera motion vectors is of length 1.0:

rT
i1ri1 = 1

rT
i2ri2 = 1

They are perpendicular to each other:

rT
i1ri2 = 0
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Ambiguity removal

Affine→ real camera:

MaffQ = M

Maff =


mT

11Q
mT

12Q
...

mT
F1Q

mT
F2Q

 =


rT
11

rT
12
...

rT
F1

rT
F2


Constraints for camera vectors:

rT
i1ri1 = 1 → mT

i1QQTmi1 = 1
rT
i2ri2 = 1 → mT

i2QQTmi2 = 1
rT
i1ri2 = 0 → mT

i1QQTmi2 = 0
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Estimation of matrix Q

Let us introduce the following notation:

L = QQT =

 l1 l2 l3
l2 l4 l5
l3 l5 l6


Important fact: matrix QQT is symmetric
Constraints can be written in linear form: Ail = bi

Ai =

[
mi1,x

2 2mi1,x mi1,y 2mi1,x mi1,z mi1,y
2 2mi1,y mi1,z mi1,z

2

mi2,x
2 2mi2,x mi2,y 2mi2,x mi2,z mi2,y

2 2mi2,y mi2,z mi2,z
2

mi1,x mi2,x e1 e2 mi1,y mi2,y mi1,y mi2,z + mi2,y mi1,z mi1,z mi2,z

]
l = [l1, l2, l3, l4, l5, l6]T bi = [1,1,0]T

where mjk ,x , mjk ,y and mjk ,z are the coordinates of vector mjk,
and e1 = mi1,xmi2,y + mi2,xmi1,y , e2 = mi1,xmi2,z + mi2,xmi2,z .
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Computation of matrix Q

Constraints can be written in linear form: Al = b,

A =
[

AT
1 AT

2 . . . AT
F
]T

b = [1,1,0,1,1,0, . . . ,1,1,0]T

Solution by over-determined inhomogeneous linear system of
equations
Matrix Q can be retrieved from L by SVD:

(SVD)
L = USUT

Q = U
√

S
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Weak-perspective projection

Modified constraints:
motion vectors are perpendicular to each other:

rT
i1ri2 = 0

Length of vectors are not unit, but equal:

rT
i1ri1 = rT

i2ri2

Equations for affine ambuguity, represented by matrix Q as
follows:

mT
i1QQTmi1 −mT

i2QQTmi2 = 0
mT

i1QQTmi2 = 0

Linear, homogeneous system of equations obtained.
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Summary of Tomasi-Kanade factorization

1 Tracked points are stacked in measurement matrix W.
2 Origin is moved to the center of gravity, translated coordinates are

stacked in matrix W̃.
3 SVD computed for W̃: W̃ = USVT .
4 Singular elements are replaced by zero, except the first three

values in S: S→ S′.
5 Affine factorization: Maff = U

√
S′ and Saff =

√
S′VT.

6 Calculation of matrix Q by metric constraints.
7 Metric factorization: M = MaffQ and S = Q−1Saff.
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Multi-view perspective reconstruction

Multi-view perspective reconstruction

Three-view geometry
Extension of epipolar geometry
Relationships can be written for 3D points and lines
Trifocal tensor introduced as the extension of the fundamental
matrix
It has small practical impact

Perspective Tomasi-Kanade factorization
Problem is a perspective auto-calibration
Difficulty: projective depths are different for all point/frames
Only iterative solutions exist
Very complicated

Viable solution: Concatenation of stereo reconstructions
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Concatenation of stereo reconstructions
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Concatenation of stereo reconstructions

Reconstruction by concatenating multiple stereo vision

For calibrated cameras, stereo reconstruction possible
Camera calibration:

Intrinsic parameters: by chessboard-based Zhang calibration
Extrinsic parameters: by decomposition of essential matrix

Spatial reconstruction: triangulation
Results:

For each stereo image pair, 3D point clouds obtained.
Transformation(translation/rotation) between images computed as
well
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Concatenation of stereo reconstructions

Concatenating point clouds

Two point clouds given
For stereo reconstruction, coordinate system is usually fixed to the
first camera.

Point clouds have N common points are stecked in vector sets:
{pi} and {qi}, (i = 1 . . .N).
Similarity transformation between images has o be estimated.

qi = sRpi + t

s: scale
R: rotation
t: translation
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Concatenation of stereo reconstructions

Concatenating stereo reconstructions

Task: optimal registration to estimate similarity transformation

N∑
i=1

||qi − sRpi − t||2

Proof given in separate document
Optimal translation t: difference of centers of gravity
Optimal rotation:

H =
N∑

i=1

q′ip
′
i
T

R = VUT ← H = USVT

Optimal scale:

s =

∑N
i=1 q′Ti Rp′i∑N

i=1 p′Ti p′i
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Bundle adjustment
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Bundle adjustment

Minimization by a numerical algorithm

The projected coordinates of j-th point in i-th frame depend on
parameters of i th camera and
spatial coordinated of j-th point.

Numerical optimization by Levenberg-Marquardt algorithm.
Jacobian matrix of the problem has to be determined.
Jacobian is very sparse.

Thus, a sparse Levenberg-Marquardt algorithm should be applied.

It is called bundle Adjustment (BA) in the literature.
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Bundle adjustment

Levenberg-Marquardt for 3D Reconstruction

LM-rule for parameter tuning:

∆p =
(

JT J + λI
)−1

JT εp

Parameters to be tuned:
camera parameters
spatial coordinates

E.g. for 20 perspective cameras and 1000 3D points:
20 · 11 + 3 · 1000 = 3220 parameters have to be estimated

Dimension of JT J is 3220× 3220.
Matrix invertion requires very high time demand.
Numerical stability of invertion is questionable
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Bundle adjustment

Jacobian matrix

Jacobian matrix
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Bundle adjustment

Jacobian matrix

Normal equation
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Bundle adjustment

Bundle adjustment: normal equation

Normal equation can be written by block of matrices:[
U X
XT V

] [
∆m
∆s

]
=

[
εm
εs

]

If normal equation is multiplied by
[

I −XV−1

0 I

]
, from the left,

normal equation is modified as follows:[
U− XVTXT 0

XT V

] [
∆m
∆s

]
=

[
εm − XV−1εs

εs

]
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Bundle adjustment

Bundle adjustment: solution for normal equation

Solution:

∆m =
(

U− XVTXT
)−1 (

εm − XV−1εs

)
∆s = V−1

(
εs − XT∆m

)
Inversion required:

V:
It contains small block matrices, they are inverted separately:(

U− XV−1XT
)−1

Its size is relatively small.
Is is also a special matrix, sub-blocks can be formed.
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Tomasi-Kanade factorization with missing data

Reconstruction with missing data

Missing data is not a problem for stereo vision
If a feature point visible ony in one image, it cannot be
reconstructed.

Bundle adjustment can cope with missing data
Matrices Ui and Vj are calculated from less points.

Tomasi-Kanade factorization requires modification.
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Tomasi-Kanade factorization with missing data

Outline: Calibration of weak-perspective camera

Problem in algebraic form:[
u1 . . . uP
v1 . . . vP

]
= [M|b]

[
X1 . . . XP
1 . . . 1

]
(3)

where M = qR̂ and
R̂ consists of the first two rows of matrix R

Camera parameters are unknown, task is a minimization:

arg min
q,R̂,b

∑
i

∣∣∣∣∣∣∣∣[ui
vi

]
− [qR̂|b]

[
Xi
1

]∣∣∣∣∣∣∣∣2
2

(4)

This is almost a point registration problem
On the left side, only two coordinates are written, not three.
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Tomasi-Kanade factorization with missing data

Outline: Calibration of weak-perspective camera

Trick: left side is extended to have three dimensions
Two rows of R̂ can be extended by the third coordinate: if rT

1 and rT
2

denote the two rows, the third one can be obtained by cross
product:

rT
3 = rT

1 × rT
2 (5)

Third coordinate of vector b is selected to be zero.
Third coordinate of left side: wi = qrT

3 Xi

Registration and completion repeated one after the other, until
convergence.
It can be proved that global optimum is reached.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization

Weak-perspective factorization is written as

W = MS (6)

→ if the center of gravity is the origin.
Factorization for arbitrary origin:

W =

 M1 b1
...

...
MF bF

[ X1 · · · XP
1 · 1

]
= [M|b]

[
X1 · · · XP
1 · 1

]
(7)

4-rank problem. It can be solved by an alternation:
Estimation of camera parameters: M-step
Estimation of 3D coordinates : S-step
Additional step (completion): extend 2D projected coordinates into
3D
All steps can be computed optimally.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: S-step

For a spatial point, the following equation can be written for j-th
frame: uij

vij
wij

 =
[

Mj bj
] [ Xi

1

]
= MjXi + bj (8)

Problem is linear, inhomogeneous, Xi can be estimated by camera
matrices:

Xi =
(

MT M
)−1

MT (Wi − b) (9)

where Wi is the i-t column of measurement matrix W.

Missing data: if a point is not visible in a frame, the corresponding
camera matrix is discarded.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: M-step

Estimation of motion matrix is a point registration problem:uij
vij
wij

 = MjXi + bj = qjRjXi + bj (10)

Offset vector is denoted by bj
Rotation: Rj
Scale: qj

Missing data: if a point is not visible in a frame, the corresponding
3D coordinate vector is discarded.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: completion step

Third coordinates in measurement matrix have to be recomputed
for all frames,
for all points,
after all steps.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade facotrization with missing data

1 Initial motion and 3D parameters are obtained by
merging full Tomasi-Kanade factorization, and
the third coordinates given by completion-steps.

2 Alternation until convergence:
M-step: camera matrix estimation as a 3D-3D point-registration
Third coordinates recomputed by completion step
3D coordinates obtained by S-step (linear estimation)
Third coordinates recomputed by completion step

All steps decrease the same least-squares cost function→
convergence guaranteed.

Unfortunately, local minima can occur.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: initialization

Mergin full sub–factorization
At least 3 images required for a weak-perspective full factorization.
Frames 1–3, 2–4, 3–5, etc. have to be processed

Factorization is carried out for frame-triplets
Results are merged.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

M1
S1
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

M2

S2
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

M3

S3
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

M4

S4
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: initialization

Concatenation of subfactorizations is not trivial.
Let us assume that two factorizations are computed

Scalar qj , matrices Rj , Sj , and vector bj known for j-th image,
as well as qj+1, Rj+1, bj+1, and Sj+1 for (j + 1)-th frame.

Concatenation of 3D point clouds is a point registration problem
Obtained parameters after point registration: rotation R , scale q,
and offset t.
The the registraton for the i-th point:

s′i = qR (si − o1) + o2 (11)

Concatenation of motion matrices
Mj+1 ← 1

q Mj+1RT

bj+1 ← bj+1 + qMj+1Ro1 −Mj+1o2
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