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Multi-view reconstruction

@ PFrinciples of multi-view reconstruction

9 Reconstruction for orthogonal and weak-perspective projection
@ Tomasi-Kanade factorization

© Multi-view perspective reconstruction
e Concatenation of stereo reconstructions
e Bundle adjustment

Q Tomasi-Kanade factorization with missing data
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Outline

@ PFrinciples of multi-view reconstruction
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Principles of multi-view reconstruction

Possibilities for multi-view reconstruction

@ Concatenation of stereo reconstructions

e Complicated

@ Reconstruction error cummulated
@ N-view solutons

e Task is non-linear

o Difficult solutions, implementation challenging
© Reconstrution by simplified camera models

o Task is linear if

@ orthogonal or
@ weak-perspective projections applied.
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Reconstruction for orthogonal and weak-perspective projection

e Reconstruction for orthogonal and weak-perspective projection
@ Tomasi-Kanade factorization
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Reconstruction for orthogonal and weak-perspective projection

Orthogonal projection
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Reconstruction for orthogonal and weak-perspective projection

Orthogonal projection

Projection: origin is the center of gravity.
T
PRI @
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Outline

@ PFrinciples of multi-view reconstruction

9 Reconstruction for orthogonal and weak-perspective projection
@ Tomasi-Kanade factorization

© Multi-view perspective reconstruction
e Concatenation of stereo reconstructions
e Bundle adjustment

Q Tomasi-Kanade factorization with missing data
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Tomasi-Kanade factorization

@ Tracked (matched across multi-frames) coordinates are stacked in
measurement matrix W.

@ It can be factorized into two matrices:

U1
Vi1
U2+

UF1
VF1
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Tomasi-Kanade factorization

@ As W = MS, the rank of W cannot exceed 3 (noiseless-case).
e Sizeof Mis2F x 3
o Sizeof Sis3x P

e Lemma: After factorization, the rank cannot inrease
@ Rank reduction of W by Singular Value Decomposition (SVD)
e Largest 3 singular values/vectors are kept, other ones are set to

zero.

e W=USVT - W=USsVT
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Ambiguity of factorization

@ Infinite number of solutions exist:
W= MS = (MQ*1) (QSs),

@ where Qis a 3 x 3 (affine) matrix.
@ M.+ = MQ~: affine motion.
@ S, = QS affine structure.

@ Constraint to resolve ambiguity: motion vectors r; are orthnormal.
e Camera motion vectors is of length 1.0:

T
T
Fiofiz = 1

e They are perpendicular to each other:
riT1 Fio = 0
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Ambiguity removal

@ Affine — real camera:

M. Q =
- T A T A
m1T1Q r1T1
m;,Q Fi2
M.st = : =
T T
m¥10 FEq
[ Mg, Q L Tr2 |

@ Constraints for camera vectors:

riT1 =1 — m|T1 QQTmn =1
riTzriz =1 — m?;QQTmiz =1
r;'; rh=0 — m;'; QQTmiz =0
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Estimation of matrix Q

@ Let us introduce the following notation:

/A
L=QQ = | b I I
b ks I

@ Important fact: matrix QQT is symmetric
@ Constraints can be written in linear form: A;l = b;

2 2 2
miq x 2myy xMiy,y  2Mjy xMjy 2 miyy 2mjy yMiy 2 mitzz
R 2 2
A| = M2, x 2Mjp xMig,y  2Mjg xMip 2 Mg y 2mijp yMiz 7 M2, 2
mi1 xMj2 x €4 7] Mg yMig .y Mig yMjg 7 + Mjg yMjy 7 Mix zMj2 7

| =[h, b,k s, l6]" by =1[1,1,0]"

@ where my x, M, and my . are the coordinates of vector mjy,
@ and ey = Mjj xMjp y + Mijp xMj1 y, €2 = My xMi2 7 + Mip x M2 5.
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Computation of matrix Q

@ Constraints can be written in linear form: Al = b,

A—[AT AT ... Al
b=[1,1,0,1,1,0,...,1,1,0]"

]T

@ Solution by over-determined inhomogeneous linear system of
equations

@ Matrix Q can be retrieved from L by SVD:

(SVD)
L = usuUT

Q=U/S
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Weak-perspective projection
@ Modified constraints:
e motion vectors are perpendicular to each other:
Mtz =0
e Length of vectors are not unit, but equal:
i1 = Fiplia

@ Equations for affine ambuguity, represented by matrix Q as
follows:

m,T1 QQTmn - m;erQTmiz =0
m,T1 QQTmi2 =0

@ Linear, homogeneous system of equations obtained.
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Reconstruction for orthogonal and weak-perspective projection Tomasi-Kanade factorization

Summary of Tomasi-Kanade factorization

@ Tracked points are stacked in measurement matrix W.

@ Origin is moved to the center of gravity, translated coordinates are
stacked in matrix W.

© SVD computed for W: W = USV7.

© Singular elements are replaced by zero, except the first three
valuesinS: S — §'.

@ Affine factorization: May = UVS’ and S, = VS'VT.
© Calculation of matrix Q by metric constraints.
@ Metric factorization: M = M,Q and S = Q~1S44.
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Outline

Q Multi-view perspective reconstruction
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Multi-view perspective reconstruction

Multi-view perspective reconstruction

@ Three-view geometry
e Extension of epipolar geometry
e Relationships can be written for 3D points and lines
e Trifocal tensor introduced as the extension of the fundamental
matrix
e It has small practical impact

@ Perspective Tomasi-Kanade factorization

e Problem is a perspective auto-calibration

Difficulty: projective depths are different for all point/frames
e Only iterative solutions exist

Very complicated

@ Viable solution: Concatenation of stereo reconstructions

Chetverikov, Hajder (ELTE IK) 3D Computer Vision 18/44



Outline

Q Concatenation of stereo reconstructions
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Concatenation of stereo reconstructions

Reconstruction by concatenating multiple stereo vision

@ For calibrated cameras, stereo reconstruction possible

@ Camera calibration:
e Intrinsic parameters: by chessboard-based Zhang calibration
e Extrinsic parameters: by decomposition of essential matrix

@ Spatial reconstruction: triangulation

@ Results:

e For each stereo image pair, 3D point clouds obtained.
e Transformation(translation/rotation) between images computed as
well
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Concatenation of stereo reconstructions

Concatenating point clouds

@ Two point clouds given

e For stereo reconstruction, coordinate system is usually fixed to the
first camera.

@ Point clouds have N common points are stecked in vector sets:
{pi} and {q;}, (i=1...N).
@ Similarity transformation between images has o be estimated.

gi = sRp; +t

@ s: scale
o R: rotation
e t: translation
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Concatenation of stereo reconstructions

Concatenating stereo reconstructions

@ Task: optimal registration to estimate similarity transformation

N
> llai — sRp; — ]2

i=1

@ Proof given in separate document
e Optimal translation t: difference of centers of gravity
@ Optimal rotation:

N
H= Zq/ip/iT

i=1
R=VU" + H=USV’

o Optimal scale:
_ > A AP
S PP
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e Bundle adjustment
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Bundle adjustment

Minimization by a numerical algorithm

@ The projected coordinates of j-th point in i-th frame depend on

e parameters of jith camera and
e spatial coordinated of j-th point.

@ Numerical optimization by Levenberg-Marquardt algorithm.
e Jacobian matrix of the problem has to be determined.
e Jacobian is very sparse.
@ Thus, a sparse Levenberg-Marquardt algorithm should be applied.

e ltis called bundle Adjustment (BA) in the literature.
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Bundle adjustment

Levenberg-Marquardt for 3D Reconstruction

@ LM-rule for parameter tuning:
—1
ap=(JTI+N) ITep

@ Parameters to be tuned:
e camera parameters
e spatial coordinates
@ E.g. for 20 perspective cameras and 1000 3D points:
20-11 4+ 3-1000 = 3220 parameters have to be estimated
e Dimension of J7J is 3220 x 3220.
e Matrix invertion requires very high time demand.
o Numerical stability of invertion is questionable
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Bundle adjustment

Jacobian matrix

Pl P2 P3 My My My My

Jacobian matrix
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Bundle adjustment

Jacobian matrix

§=

. JDr

Normal equation
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Bundle adjustment

Bundle adjustment: normal equation

@ Normal equation can be written by block of matrices:
U X Am o €m
XT V AS o €s

I —Xxv-!

@ If normal equation is multiplied by [ 0 I ], from the left,

normal equation is modified as follows:

XT v As

€s

{U—XVTXT 0} {Am ] :[em—XV_1es]
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Bundle adjustment

Bundle adjustment: solution for normal equation

e Solution:
Am = (U- vaxT)_1 (em —XV7es)
As = V! (65 — XTAm>

e Inversion required:

o V:
@ It contains small block matrices, they are inverted separately:
—1
° (U — XV‘1XT)
@ lts size is relatively small.
@ Is is also a special matrix, sub-blocks can be formed.
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Q Tomasi-Kanade factorization with missing data
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Tomasi-Kanade factorization with missing data

Reconstruction with missing data

@ Missing data is not a problem for stereo vision

e If a feature point visible ony in one image, it cannot be
reconstructed.

@ Bundle adjustment can cope with missing data
e Matrices U; and V; are calculated from less points.

@ Tomasi-Kanade factorization requires modification.
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Tomasi-Kanade factorization with missing data

Outline: Calibration of weak-perspective camera

@ Problem in algebraic form:

A4 T (I

e where M = gR and

o R consists of the first two rows of matrix R
@ Camera parameters are unknown, task is a minimization:

v 3 [v] 1o 3]

gq,R,b
@ This is almost a point registration problem
@ On the left side, only two coordinates are written, not three.

2
(4)
2
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Tomasi-Kanade factorization with missing data

Outline: Calibration of weak-perspective camera

@ Trick: left side is extended to have three dimensions

o Two rows of R can be extended by the third coordinate: if r] and r]
denote the two rows, the third one can be obtained by cross
product:

rl=r] xr] (%)
e Third coordinate of vector b is selected to be zero.
e Third coordinate of left side: w; = qrlX;

@ Registration and completion repeated one after the other, until
convergence.

@ It can be proved that global optimum is reached.
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Tomasi-Kanade factorization

@ Weak-perspective factorization is written as
W =MS (6)

— if the center of gravity is the origin.
@ Factorization for arbitrary origin:

Ml Bl ey X X X
w=| : | : TP =l T TP
1 1 1 1
Me | be
@ 4-rank problem. It can be solved by an alternation:
e Estimation of camera parameters: M-step
e Estimation of 3D coordinates : S-step

e Additional step (completion): extend 2D projected coordinates into
3D

All steps can be computed optimally.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: S-step

@ For a spatial point, the following equation can be written for j-th

frame:
ujj X
Vi Z[be/][1']='\"/xi+bj (8)
Wi

@ Problem is linear, inhomogeneous, X; can be estimated by camera
matrices:

X; = (MTM)A M7 (W; — b) 9)

o where W; is the i-t column of measurement matrix W.

@ Missing data: if a point is not visible in a frame, the corresponding
camera matrix is discarded.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: M-step

@ Estimation of motion matrix is a point registration problem:

Uj
Vi| = ij,' +b; = qujX,' + b]' (10)
w;

o Offset vector is denoted by b;
e Rotation: R;
e Scale: g;
@ Missing data: if a point is not visible in a frame, the corresponding
3D coordinate vector is discarded.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: completion step

@ Third coordinates in measurement matrix have to be recomputed

o for all frames,
e for all points,
o after all steps.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade facotrization with missing data

@ Initial motion and 3D parameters are obtained by
e merging full Tomasi-Kanade factorization, and
e the third coordinates given by completion-steps.
@ Alternation until convergence:
o M-step: camera matrix estimation as a 3D-3D point-registration
Third coordinates recomputed by completion step
3D coordinates obtained by S-step (linear estimation)
Third coordinates recomputed by completion step

@ All steps decrease the same least-squares cost function —
convergence guaranteed.

e Unfortunately, local minima can occur.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: initialization

@ Mergin full sub—factorization

o At least 3 images required for a weak-perspective full factorization.
e Frames 1-3, 2—4, 3-5, etc. have to be processed

@ Factorization is carried out for frame-triplets
@ Results are merged.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

-
M1
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

- I
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

-
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: partial reconstructions

.
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Tomasi-Kanade factorization with missing data

Tomasi-Kanade factorization: initialization

@ Concatenation of subfactorizations is not trivial.
@ Let us assume that two factorizations are computed
e Scalar g;, matrices R;, S;, and vector b; known for j-th image,
e as well as g1, Rj1, bj1, and S for (j + 1)-th frame.
@ Concatenation of 3D point clouds is a point registration problem

o Obtained parameters after point registration: rotation R, scale q,
and offset t.
e The the registraton for the i-th point:

s;=qR(s;—01) + 02 (11)
@ Concatenation of motion matrices

1 T
"] Mj+1 — EMj+1R
) bj+1 — bj+1 + qu+1 Ro; — Mj+102
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