Camera Sensors

Peter D. Kozma – ELTE IK

Content overview

How does a camera work?

Human eye and camera sensor

Camera components

Thin lens- and paraxial approximation

- Focal lenght (f): the distance from the center of the lens to the principal foci (or focal points) of the lens
- Working distance (s): object to lens distance where the image is at its sharpest focus
- Focal distance (s'): lens to sensor distance where the image is at its sharpest focus
- **Depth of Field (DoF):** maximum range where the object appears to be in acceptable focus
- Magnification (M): ratio between object (h) and its image (h')
- **Resolution:** minimum distance between two points that can still be distinguished as separate points
- Field of View (FoV): total area that can be viewed by the lens and imaged onto the camera sensor
- **F-number (F/#):** the ratio of the focal length (f) to the diameter (d) of the aperture

Real world optics

- Ray tracing: design analysis and optimization
 - Zemax OpticStudio: zemax.com
 - Code V: synopsys.com/optical-solutions/codev.html
 - OSLO: lambdares.com/oslo
 - TracePro: lambdares.com/tracepro
 - Comsol Multiphysics: comsol.com/ray-optics-module

Why is it so complex?

Careful design

• Difficult requirements

- High resolution
- Special working distance
- Special wavelength
- Variable focal distance
- High FoV
- Large DoF
- Miniaturization
- Cost optimization

Special materials Difficult manufacturing **Complex assembly**

- Potential aberrations
 - Physical aberrations
 - Spherical aberrations
 - Chromatic aberrations
 - Astigmatism
 - Coma
 - Field curvature
 - Distortion
 - Low contrast and resolution
 - Vignetting

Physical aberrations

- Effects
 - Stray light (flare)
 - Loss of sharpness (blurring)
 - Reduced contrast (haze)
 - Washed-out colors
- Correction possibilities
 - Cleaning
 - Repair
 - Replacement
 - Preventive measures
 - Software correction

Dirt, dust, scratches, inhomogeneities

Damaged optical coating

Physical aberrations

Spherical aberrations

• Effects

- Loss of sharpness (blurring)
- Reduced contrast (haze)
- Halo around bright objects
- Correction possibilities
 - Aperture reduction
 - Replacement to aspheric lens
 - Correction lens
 - Software correction

Chromatic aberration

• Effects

- Color fringing
- Loss of sharpness (blurring)
- Reduced contrast (haze)
- Correction possibilities
 - Aperture reduction
 - Replacement to achromatic lens
 - Correction lens
 - Software correction

Astigmatism, coma, field curvature

- Loss of sharpness (blurring)
- Reduced contrast (haze)
- Correction possibilities
 - Aperture reduction
 - Replacement of lens
 - Correction lens
 - Software correction

Reduced contrast, reduced resolution

• Effects

- Loss of sharpness (blurring)
- Reduced contrast (haze)
- Washed-out colors
- Correction possibilities
 - Aperture reduction
 - Replacement of lens
 - Software correction

Distortion

- Image deformation
- Correction possibilities
 - Replacement of lens
 - Correction lens
 - Software correction

Barrel Distortion

Vignetting

- Decreasing intensity by angle of incidence
- Correction possibilities
 - Aperture increase
 - Decreased FoV
 - Software correction

Optics manufacturers

- Some relevant optics manufacturers
 - Carl Zeiss AG: zeiss.com
 - Nikon Corporation: nikon.com
 - Thorlabs, Inc.: thorlabs.com
 - Edmund Optics: edmundoptics.com
 - Schott AG: schott.com
 - Corning Incorporated: corning.com
 - Jenoptik AG: jenoptik.com
 - Olympus Corporation: olympus-global.com
 - Leica Microsystems: leica-microsystems.com
 - Canon Inc.: global.canon.com

The photoelectric effect

- Electromagnetic radiation can cause electron emission (H. Hertz)
- P. Lenard's experiment results disagreed with classical electromagnetism
- The phenomenon is frequency dependent
- A. Einstein's quantum model of light Nobel Price (1921)
- Material absorbs photons (*E=hv*) and

emits (photo)electrons, if E > work function

Photodetector

- Semiconductor device to transform optical signal to electrons, a kind of diode
- PN junction of large area & shallow junction depth
- Operating under reverse voltage
- No light \rightarrow low reverse current = dark current
- Photons generate electron-hole pairs
- Reverse current = photocurrent ~ light intensity (not voltage)

PIN photodiode

Quantum efficiency

- Different materials for different applications
 - Silicon (Si)
 - Germanium (Ge)
 - Indium Gallium Arsenide (InGaAs)
 - Gallium Arsenide (GaAs)
 - ... and many others
- Spectral responsivity (*R*): [A/W]
 - Intensity to current conversion
- Quantum efficiency (η) : []
 - Photon to photoelectron conversion

Image sensor

- Main components of a pixel
 - Microlens array
 - Color filter
 - Photodiode
 - Electronics
- Sensor Architecture
 - Front-side illuminated
 - Back-side illuminated
- Sensor technology
 - Charge coupled device
 - Complementary metal-oxide semiconductor

Illumination spectrum

Quantum efficiency plot

Quantum efficiency plot

- Charge coupled device (CCD)
 - Higher sensitivity
 - Higher uniformity
- Complementary metal-oxide semiconductor (CMOS)
 - Faster readout and ROI
 - Higher integrability (SoC)
 - Lower power consumption
 - Lower manufacturing cost

<u>Video</u>

Shutter types

- Rolling shutter
 - Typically CMOS
 - Motion artifacts
 - Synchronization issues
- Global shutter
 - Typically CCD
 - Lower frame rates
 - Higher power consumption

Typical image sensor sizes

Image sensor providers

- Some relevant image sensor providers
 - Sony: sony-semicon.co.com *
 - Samsung: samsung.com *
 - OmniVision: ovt.com *
 - ON Semiconductor: onsemi.com *
 - Panasonic: panasonic.com *
 - STMicroelectronics: st.com *
 - Canon: canon.com
 - Toshiba: teli.com.jp
 - Himax Tech: himax.com.tw
 - Teledyne e2v: teledyne-e2v.com
 - Pixart Imaging: pixart.com

Image signal processor and interfaces

Image signal processor

• Most important features of ISP

- Sensor data acquisition
- Black level correction
- Noise reduction
- Defective pixel correction
- White balance
- Demosaicing
- Color correction
- Color denoising
- Gamma correction
- Vignetting correction
- Distortion correction
- Edge enhancement
- Auto focus
- High dynamic range (HDR) processing
- Image scaling
- Color space conversion
- Image compression
- Final image formatting
- Metadata generation

Image signal processor manufacturers

• Some relevant ISP providers

- Qualcomm: qualcomm.com *
- Sony: sony-semicon.co.jp *
- Samsung: samsung.com *
- OmniVision: ovt.com *
- Apple: apple.com
- Intel: intel.com
- Huawei: huawei.com
- Nvidia: nvidia.com *
- Ambarella: ambarella.com *
- ST Microelectronics: st.com *
- ON Semiconductor: onsemi.com *
- Texas Instruments: ti.com *

Interfaces and connectors

• Most common protocols

- MIPI CSI-2 *
- USB
- LVDS *
- Ethernet *
- PCle
- CoaXPress
- HDMI/Display port
- Camera Link
- FPD-Link III *
- FireWire (IEEE 1394)
- SDI
- I²C
- SPI

- Most common connectors
 - FPC
 - MIPI *
 - USB
 - FAKRA *
 - Board-to-Board *
 - Coaxial *
 - Hirose
 - PCle
 - Ethernet (RJ45)
 - Automotive Ethernet *
 - HDMI/DisplayPort
 - FireWire

Camera performance

EMVA 1288

• EMVA 1288

- Standard for characterization of image sensors and cameras
 - <u>Linear characteristics</u>
 - General characteristics
- Measurements for
 - Quantum efficiency
 - Gain
 - Dark noise
 - Signal to noise ratio
 - Absolute sensitivity ratio
 - Saturation capacity
 - Dynamic range
 - Dark signal nonuniformity
 - Photo response nonuniformity
 - Non-linearity error
 - Dark current
- Companies are following the standard: Link

E·L·T·E IK

Test charts

Focus chart

Important camera parameters

• Some important imaging parameters

- Sensor- and pixel size
- Resolution
- Bit depth
- Color filter array
- Quantum efficiency
- Sensitivity
- Signal-to-noise ratio
- Dynamic range
- Shutter type
- Frame rate
- Readout speed
- Temperature sensitivity
- Power consumption
- Price
- etc

Automotive grade requirements

Careful component selection

Extensive component testing

Accurate assembly

Product validation

Proper handling

- Some important optics parameter
 - Focal length
 - Aperture
 - Field of view
 - Resolution
 - Optical coatings
 - Optics quality (aberrations)
 - Build quality and material
 - Size and weight
 - Environmental resistance
 - Mount type
 - Compatibility with image sensor
 - Price
 - etc

Product tests

• Product testing before release

- Image quality testing
- Environmental testing
- Mechanical and durability testing
- Electrical and signal integrity testing
- Functional testing
- Reliability and lifespan testing
- Compliance and certification testing
- Performance testing in real-world

Automotive camera types

Camera optics

• Typical camera optics in autonomous vehicles

- Long-range cameras
 - FoV: 30 60°
 - Long-range
 - Pinhole camera model
- Wide-angle cameras
 - FoV: 90 120°
 - Mid-range
 - Wide-angle camera model
- Surround cameras
 - FoV: > 180°
 - Close-range
 - Fisheye or ocam camera model

Color filter arrays

• Typical CFAs in autonomous vehicles

- RGGB (Bayer filter)
 - Standard for color accuracy
- RGBIr
 - Color + enhanced low-light perf.
- RGCB (Panchromatic)
 - Color + enhanced low-light perf.
- RCCB
 - Balance between sens. and color inf.
- RCCC
 - Sensitivity with minimal color inf.
- CCCC (Monochrome)
 - Maximizes sensitivity

R	G	R	G
G	В	G	в
R	G	R	G
G	В	G	в

R	С	R	с
с	В	с	В
R	С	R	с
с	В	с	В

R	G	R	G
с	В	с	В
R	G	R	G
с	в	с	в

R	С	R	с	
С	с	С	с	
R	с	R	с	
С	с	С	с	

с	с	С	с
С	с	с	с
С	С	с	с
с	с	с	с

High dynamic range

• HDR image generation

- High well depth
 - Single exposure
 - Linear characteristics
 - 70 90 dB
- Multi-exposure method
 - Typically 3 4 exposures
 - Piecewise linear characteristics
 - 120 140 dB
- Nonlinear image sensor
 - Single exposure
 - Logarithmic characteristics
 - 100 120 dB

High dynamic range

High dynamic range

IMX490 HDR Simultaneous Exposure

Time

HDR Image No motion artifacts

LED flicker mitigation

.

LED flicker mitigation

Cameras

- Some relevant automotive camera manufacturers
 - Bosch
 - Continental
 - Magna
 - ZF Friedrichshafen
 - Valeo
 - Autoliv / Veoneer
 - Mobileye
 - Sony
 - Aptiv
 - Denso

Stereo cameras

- Some relevant automotive stereo camera manufacturers
 - Bosch
 - Continental
 - Autoliv / Veoneer
 - Denso

Infrared cameras

• Some relevant infrared camera manufacturers for autonomous vehicles

- Teledyne FLIR
- Adasky
- How to apply in bad weather conditions?

Can you understand the scene?

And now?

Time of flight cameras

• Time of flight cameras

- Time of flight image sensors
- Infrared light source
- Very limited range
- Very limited outdoor performance
- <u>Not</u> for automotive applications
- <u>Video</u>

