Radar Sensors

Peter D. Kozma – ELTE IK

Content overview

What is radar?

Radar wave and Doppler shift

4

• Radar wave

- Electromagnetic (EM) radiation
- From 3 MHz up to 300 GHz
- From \sim 100 m down to \sim 1 mm
- Speed of radiation: ~ 3 x 10⁸ m/s
- Radar bands (IEEE, NATO)
- Doppler effect
 - Frequency shift of EM radiation

due to the relative velocity of

- Source
- Observer

Classical radar measurement

- Radar (Radio Detection and Ranging) emits electromagnetic radiation and measures
 - Distance (e.g.: time-of-flight, modulation)
 - Direction (e.g.: rotation, beam deflection)
 - Radial speed (frequency shift)
- The output:
 - 1D: range/velocity
 - 2D: range-azimuth/velocity
 - 3D: range-azimuth-elevation/velocity
 - 4D: range-azimuth-elevation-velocity

Different radars

Applications

- Some relevant application fields
 - Agriculture
 - Automotive *
 - Aerospace and aviation
 - Geology and environmental studies
 - Law enforcement and security
 - Ocean surveillance
 - Maritime traffic control
 - Meteorology
 - Military and defense
 - Space exploration

nd Designation	Frequency Range		
HF	3–30 MHz		
VHF	30–300 MHz		
UHF	300–3000 MHz		
L	1–2 GHz		
S	2–4 GHz		
С	4-8 GHz		
Х	8–12 GHz		
Ku	12–18 GHz		
Κ	18–27 GHz		
Ka	27–40 GHz		
V	40–75 GHz		
W	75–110 GHz		
mm	110-300 GHz		

λ [millimeter]	λ [meter]	
Better angular res.	Longer det. range	

How do radars work?

Unmodulated radars

- Unmodulated continuous wave radar
 - EM wave is continuously emitted
 - Return signal (echo) is collected
 - Frequencies are compared
 - Relative speed (v) is calculated
- Unmodulated pulsed radar
 - EM pulse is emitted
 - Return signal (echo) is collected
 - Time-of-flight (τ) is measured
 - Distance (r) is calculated

unmodulated continuous wave

Modulated radars

- Amplitude Modulated Continuous Wave (AMCW)
 - AMCW signal is emitted
 - Return signal is collected
 - Phase difference ($\Delta \Phi$) is measured
 - Lock-in detection method
 - Distance (r) is calculated

Automotive radars

- Frequency Modulated Continuous Wave (FMCW)
 - FMCW signal is emitted
 - Return signal is collected
 - <u>Beat frequency</u> (f_{beat}) is measured
 - <u>Doppler shift</u> (f_d) is measured
 - Distance (r) and rel. radial speed (v) are calc.

Intrapulse modulated radars

- Short unmodulated pulses
 - shorter pulses \rightarrow better range resolution
 - shorter pulses \rightarrow more difficult to create
 - no direct radial speed measurement
- Intrapulse modulation (pulse compression)
 - Within a pulse the EM wave is modulated
 - frequency
 - phase
 - longer pulses with the same results
 - easier to detect and correlate modulated

pulses

pulse

Radar cross section

- Radar cross section (RCS, σ) of an object is the cross-sectional area of a perfectly reflecting sphere that would produce the same strength reflection as would the object.
- σ is the function of
 - target material
 - target size
 - incident angle
 - polarization direction
- <u>Radar equation</u>: connection between transmitted-

and received power

Power density at the target

Isotropic spreading (backward)

Reflected power density at the receiver

RADAR CROSS SECTION

Radar cross-section (RCS) is a measure of how detectable an object is by radar. An aircraft's RCS depends on its physical shape, materials, antennae, and other sensors. Onboard sensors can also play a role in determining RCS as materials and design.

Automotive radar

Automotive radars

• Automotive radars today are typically

- fully integrated and invisible
- compact devices
- FMCW wave modulation
- millimeter wave regime (76–81 GHz)
- high measurement rate (25 – 100 Hz)
- 4D: range, azimuth, elevation, radial speed
- high resolution
- new cars are equipped with radar(s)

MIMO radar components

VBATT

COMIH COMIC

ONS

COM2H

COMSE

Bosch

Radom ٠

- Weatherproof ٠
- Transparent for radio waves ٠
 - Fiberglass or plastic ٠
- Housing ٠
 - Weatherproof •
 - Metal •
- Electrical components •
 - Printed circuit board (PCB) ٠
 - **Stacked PCBs** •
- Connector •
 - High speed •
 - Fakra, Automotive Ethernet, HSD ٠
 - Low speed •
 - CAN Bus ٠

Azimuth and elevation

- TX (transmitter) antenna
- RX (receiver) antenna
 - Phase difference measurement
 - 1D array: azimuth
 - 2D array: azimuth and elevation

Spatial convolution

- MIMO radar signal processing
 - # of virtual antennas: #_TX × #_RX
 - Enlarged virtual aperture
 - Improved angular resolution
 - Improved immunity to interference
 - Full time on target (no scanning)

Examples of virtual arrays

Transmitter signals

- To distinguish between the various transmitter signals each Tx antenna has its own arbitrary baseband waveform generator
 - Time division multiplex (typical)
 - Sequential activity
 - Timing-based signal separation
- Emerging technologies (not yet typical)
 - Frequency division multiplex
 - Parallel activity
 - Frequency-based signal separation
 - Code division multiplex
 - Parallel activity
 - Code-based return separation

Antenna radiation pattern

- Radar detection in the FoV
 - Radiation pattern
 - Defines the application
 - In case of a directional antenna:

Range – Doppler map calculation

- FMCW "chirp" signal is emitted
- Reflected signal is mixed with the original one
- 4D detection
 - Range: beat frequency
 - Velocity: Doppler shift
 - Azimuth and elevation: channels
- Components:
 - PLL: phase-locked loop oscillator
 - PA: power amplifier
 - LNA: low noise amplifier
 - IF: intermediate frequency
 - ADC: analog-to-digital converter

Range – Doppler map calculation

- Real-world scenario is more complex
 - Multiple reflections
 - Different orientations
 - Different radar cross sections

Range – Doppler map calculation

Signal bandwidth

- Range resolution (ΔR)

 - depends on the signal bandwidth (B)

 $\Delta R = \frac{c}{2B} = \frac{c}{2ST_c}$

Bandwidth

mmWave picture taken by Rohde&Schwarz, frequency 70 GHz to 80 GHz, several thousand transmitting and receiving antennas

E·L·T·E IK

Object list

Automotive radar performance

Performance metrics

• Some relevant performance metrics

- Detection range, resolution, accuracy
- Velocity range and resolution, accuracy
- Field of view and angular resolution (A, E)
- Angular resolution, accuracy
- Antenna channels
- Cycle time
- Operating frequency band
- Power consumption
- Ingress protection rating (<u>wiki</u>)
- Mechanical resistance
- Operating temperature
- Communication interface
- Compliance (ISO, IEC, RoHS, etc)

+

- Extra features, e.g.
 - Elevation measurement capability
 - Different operation modes

Parameter		Long-Range Mode	Medium-Range Mode	Short-Range Mode		
Operating Frequency		7781GHz 3 center frequencies (bands)	7781GHz 3 center frequencies (bands)	7781GHz 3 center frequencies (bands)		
Range	Min./Max. ¹	0.8m/120m 2.6ft/394ft	0.4m/55m 1.3ft/180ft	0.15m/19.3m 0.5ft/63ft		
	Separation	< 1.2m < 3.9ft	< 0.6m < 2.0ft	< 0.3m < 1.0ft		
	Accuracy	< 0.5m < 1.64ft or 1% (bigger of)	< 0.3m < 1.0ft or 1% (bigger of)	< 0.15m < 0.5ft or 1% (bigger of)		
Speed	Min./Max.	-340+140km/h -211+87mph	-340+140km/h ∣ -211+87mph	-400+140km/h -249+87mph		
	Separation	< 0.3m/s	< 0.3m/s	< 0.3m/s		
	Accuracy	< 0.15m/s	< 0.15m/s	< 0.15m/s		
Angle	Field of View: Azimuth ²	-50+50° (squint beam)	-65+65° (straight beam)	-65+65° (straight beam)		
	Field of View: Elevation ²	-7.5+7.5°				
	Separation: Azimuth	~30° (optional)				
	Accuracy: Azimuth ³	≤ 1° (at <50° from bore sight)				
Accuracy: Elevation ³		≤ 2° (at <10° from bore sight)				
Mechanical Details						
Weight		≤ 153g ≤ 5.4oz				
Dimensions (H/W/D)		97 x 76 x 17.7mm 3.8 x 2.99 x 0.7in (plus connector)				
Further Information						
Initialization Time		< 4s				
Update Cycle Time ⁴		≤ 55ms				
Processing Latency		2-4 cycles				
Operating Voltage ⁵		824V				
Power Consumption ⁶		3.755W				
Bandwidth		< 2000MHz				
Max. Transmit Power (EIRP)		≤ 31dBm				
Operating & Storage Temperature		-40+85°C -40+185°F				
Interfaces	nterfaces ⁷ Ethernet 100Mbit (2-wire); 2xCAN V2.0b (passive)) (passive)		
Connector		TE 1411001-1 series				
Shock / Vibration		100g _{rms} / 14g _{rms}				
Relative Humidity		095% (non-condensing)				
IP		67				
Pressure or Transport Altitude		010000m 032800ft				

Performance test

- Radar performance tests standards
 - European Telecommunications Standards Institute
 - ETSI EN 303 396 (Meas. techniques)
 - ETSI EN 302 858 (24.05 24.25 GHz radars)
 - ETSI EN 301 091-1 (76 77 GHz radars)
 - <u>ETSI EN 302 264</u> (77 81GHz radars)
 - Institute of Electrical and Electronics Eng.
 - <u>IEEE SA P3116</u>
 - Approved in 2021 (not available)
 - Individual, application-tailored evaluations
 - Muckenhuber et al.

Performance limitations

- Detection range, resolution, accuracy
- Velocity range and resolution, accuracy
- Field of view, angular resolution, accuracy
- Ambiguity (range, velocity, angle)
- Frame rate and chirp time
- Bandwidth regulations
- Radar cross section
- Reflections
- Interference and crosstalk
- Environmental conditions
- Data latency
- Power consumption

Automotive radars

Relevant manufacturers

• Some relevant automotive radar manufacturers

OEMs

- Bosch
- Continental
- Aptiv (formerly Delphi)
- Denso
- Hella
- Infineon
- Magna
- NXP
- Texas Instruments
- Veoneer (formerly Autoliv)
- Valeo
- ZF Friedrichshafen

Startups

- Altos
- Arbe
- Metawave
- Oculii (acquired by Ambarella)
- Uhnder
- RadSee
- SmartMicro

4D Radar Tensor & Lidar Point Cloud Calibration Results

K-Radar: 4D Radar Object Detection Dataset and Benchmark for Autonomous Driving in Various Wearher Conditions

Dong-Hee Paek*, Seung-Hyun Kong*[†], Kevin Tirta Wijaya

*:equal contribution, †:corresponding author

Radar Revolution. Delivered.

1

