Point-ellipse distance
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1 Problem Statement
Given an ellipse in the form

Au? + Bv?> + Cuv + Du+ Ev+ F = 0.

This is equivalent to
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2 Closest point

The cost function to be minimized , , which yields the closest/further point(s)
x w.r.t. x,is as follows:
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where



The gradient of the cost function is as follows:
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By applying the rule for the inversion of a 2 x 2 matrix, one can obtain
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It can be written in the form of
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The constraint is then given in the following form:

2T Mz +2a"x + F = 0.

After substitution, the formula is
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This is a quartic polinomial. There are at most four roots for A\ which should
be evaluated. The values should be substituted to Eq.1, and the closest point
is the final solution.



