
Numerical Optimization

November 9, 2020

1 Introduction

In 3D computer vision, similarly to other estimation tasks, there are many
minimization/maximization problems for which closed-form solutions do not
exist. In this case, a vible solution to obtain the minimization is the application
of numerical optimization techniques. They usually require an initial point,
then try to make the cost function lower step-by-step.

2 Approximation by a Taylor serie

The cost function, denoted by J(x), close to a given location x0 can be approx-
imated by the well-known Taylor series technique:

J(x0 + ∆x) = J(x0) +∇JT (x0)∆x +
1

2
∆TxH∆x + . . .

where

∇J(x) =


∂J(x)
∂x1

∂J(x)
∂x2

...
∂J(x)
∂xN


is the gradien of the cost function, and

H(x) =


∂2J(x)
∂x2

1

∂2J(x)
∂x1x2

· · · ∂2J(x)
∂x1xN

∂2J(x)
∂x2x1

∂2J(x)
∂x2

2
· · · ∂2J(x)

∂x2xN

...
...

. . .
...

∂2J(x)
∂xNx1

∂2J(x)
∂xNx2

· · · ∂2J(x)
∂x2

N


is the so-called Hesse matrix. The latter one is symmetrix, because ∂2J(x)

∂xixj
=

∂2J(x)
∂xjxi

for all i and j.

For the one-parameter case, the Taylor serie is as follows:

f(x+ ∆x) = f(x0) + f ′(x0)∆x+
1

2
f (2)(x0)∆2x+ . . .

1



2.1 Gradient method

The simplest strategy is to move the value x0 to the steepet descent. In this
case,

∆x = −α∇J

where α is a parameter to be set. Usually, it is empirically tuned.

2.2 Newton method

In the latter case of this document, only terms of the Taylor serie until the
quadratic one is considered as it is written in the formulas above. (Higher
terms are hidden by the dots.) If the initial value x0 is given, the optimal value
for step ∆x is given by derivating the cost function w.r.t. ∆x:

∂J

∂∆x
= ∇J + H∆x = 0

Then the step is calculated as

∆x = −H−1∇J

2.3 Gauss-Newton method

This method is designed for least-squares optimization. In this case, a cost
function can usually be written by summing the square of the terms as

J =

M∑
j=1

f2j (x) = f(x)
T
f(x),

where

f(x) =


f1(x)
f2(x)

...
fM (x)

 .
The gradient of the cost function is obtained as follows:

∇J = 2∇T f(x)f(x),

where ∇f(x) is a M ×N matrix:

∇T f(x) =


∂f1
∂x1

∂f2
∂x1

· · · ∂fM
∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fM
∂x2

...
...

. . .
...

∂f1
∂xN

∂f2
∂xN

· · · ∂fM
∂xN

 ,

2



since
∂J

∂xi
=
∂
∑

j f
2
j (x)

∂xi
= 2

∑
fj(x)

∂fj(x)

∂xi
.

The second derivatives are as follows:

∂2J

∂xi∂xk
= 2

∑
j

∂fj(x)

∂xi

∂fj(x)

∂xk
+ 2

∑
j

fj(x)
∂2fj(x)

∂xi∂xk

If the second term is omitted,

∂2J

∂xi∂xk
≈ 2

∑
j

∂fj(x)

∂xi

∂fj(x)

∂xk

Then the Hesse matrix is as follows:

H ≈ 2∇T f(x)∇f(x)

Then the iteration itself is as follows:

∆x = −H−1∇J =
(
∇T f(x)∇f(x)

)−1∇T f(x)f(x)

3 Levenberg-Marquardt algorithm

The Levenberg Marquardt method is the mixture of gradient and Gauss-Newton
algorithms. The update step is as the combination of gradient and Gauss-
Newton method:

∆x =
(
∇T f(x)∇f(x) + αI

)−1∇T f(x)f(x)

If α = 0, Gauss-Newton method is obtained, if α is large, the gradient step
dominates the update procedure.

3


