Basic Algorithms for Digital Image Analysis

Dmitrij Csetverikov

Eötvös Loránd University, Budapest, Hungary

csetverikov@inf.elte.hu
csetverikov@sztaki.hu

Faculty of Informatics

イロト イポト イヨト イヨト

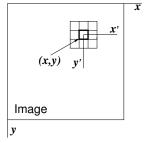
э

Image filters

Image filtering

- Correlation and convolution
- Basics of noise filtering
- 2 Frequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking
- Fast and adaptive filters
 - Separable filters
 - Run filtering
 - Adaptive noise filtering

▲ @ ▶ ▲ ⊇ ▶


Correlation and convolution Basics of noise filtering

Neighbourhood operators

 Output value in (x, y) determined by neighbourhood of (x, y):

g(x,y)=T[f(x,y)]

- *f*(*x*, *y*) is input, *g*(*x*, *y*) output image
- *T* is operator on *f*, defined over neighbourhood of (*x*, *y*)
- Window sampling (observation) assuming *local* dependence between pixels
 - correlation decreases with distance
 - not true for periodic patterns

 3×3 window in point (x, y)x', y': local coord.

くロト (過) (目) (日)

Correlation and convolution Basics of noise filtering

Non-recursive and recursive operators

- Non-recursive neighbourhood operator
 - output only depends on input image neighbourhood
 - output separated from input: input not modified during operation
 - action limited to neighbourhood
- Recursive neighbourhood operator
 - output depends in part on previously generated output values
 - output not separated from input: input modified during operation
 - action extends beyond neighbourhood
 - useful but much more complicated
- We only consider non-recursive operators

イロト イポト イヨト イヨト

General non-recursive neighbourhood operator

 $g(x,y) = \phi[x,y,f(x',y'):(x',y') \in N(x,y)]$

- f(x, y) is input image, g(x, y) output image
- N(x, y) is neighbourhood of point (x, y)
- (x', y') are *local coordinates* within N(x, y)
- $f(x', y') : (x', y') \in N(x, y)$ is list of pixel values in N(x, y)
 - scan N(x, y) in certain order
 - for each $(x', y') \in N(x, y)$, pick f(x', y') and place into list
- ϕ may depend on position (x, y) within input image
 - neighbourhood N(x, y) may depend on (x, y)
 - procedure computing output value may depend on (x, y)
- ϕ may be nonlinear
 - linear operator A: $A(\alpha p + \beta q) = \alpha A p + \beta A q$

Correlation and convolution Basics of noise filtering

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- 2 Frequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking
- 3 Fast and adaptive filters
 - Separable filters
 - Run filtering
 - Adaptive noise filtering

イロト イポト イヨト イヨト

Correlation and convolution Basics of noise filtering

Correlation

Linear shift-invariant operator is linear combination of input pixels: **cross-correlation** of image f with mask w

$$g(x,y) = (f \otimes w)(x,y) \doteq \sum_{\substack{(x',y') \in W \\ (x+x',y+y') \in F}} f(x+x',y+y') \cdot w(x',y')$$

- W is set of positions in window, F in image
- neighbourhood W and weights w(x', y') are shift-invariant
- w called kernel or mask of weights

ヘロン 人間 とくほ とくほ とう

э.

Correlation and convolution Basics of noise filtering

Convolution

Convolution of image *f* with kernel *w*:

$$g(x,y) = (f * w)(x,y) \doteq \sum_{\substack{(x',y') \in W \ (x-x',y-y') \in F}} f(x-x',y-y') \cdot w(x',y')$$

- Window *W* is scanned in reversed order.
- We will work with symmetric masks.
 - \Rightarrow no difference between correlation and convolution

ヘロン 人間 とくほ とくほ とう

3

Basic properties of convolution

- Correlation is convolution by reflected mask: $f \otimes w = f * w^{\sim}$
 - $w^{\sim}(x,y) \doteq w(-x,-y)$ is reflection of w
- 2 Commutative: w * v = v * w (order is arbitrary)
- Solution (*f* * *w*) * *v* = *f* * (*w* * *v*)
- 3 Distributive: (f + g) * w = f * w + g * w
- Solution Homogeneousi: $(\alpha f) * w = \alpha (f * w)$ for any constant α
- Solution Reflection of composition: $(w * v)^{\sim} = w^{\sim} * v^{\sim}$
 - f and g are images, w and v masks
 - *w* * *v*: mask *w* is treated as image and convolved with *v*
 - result is a larger mask
 - associativity can be used to speed up filtering

Correlation and convolution Basics of noise filtering

Examples: 3×3 mean filters

- Box filter: mean filter with uniform weights
- Otherwise, weights decrease with distance from center
 - contribution to result decreases with distance
- Normalising factors are sums of mask coefficients
 - output range: [minval, maxval]
- Filter size is normally odd

ヘロン 人間 とくほ とくほ とう

1

Correlation and convolution Basics of noise filtering

5×5 mean filters 1/2

$$\begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- This 5×5 filter is convolution of two 3×3 filters.
- Allows for faster implementation:
 - 5×5 filter: $5 \times 5 = 25$ multiplications, 24 additions
 - two 3 \times 3 filters: 2 \times 3 \times 3 = 18 multiplications, 2 \times 8 = 16 additions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Image filtering Frequently used filters

Fast and adaptive filters

Correlation and convolution Basics of noise filtering

5×5 mean filters 2/2

This filter is discrete version of

$$w(r)=8-r^2,$$

where $r = \sqrt{x^2 + y^2}$ is distance from center (8).

- for example, $4 = 8 2^2$
- note rotation symmetry

イロト 不得 とくほと くほとう

3

Correlation and convolution Basics of noise filtering

Application of convolution filter: numerical example 1/2

1 2 1 -	2 2	2 7	0									
			8	7	7		-	4				-
$\frac{1}{16} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \end{vmatrix} *$	2 3	9	9	8	8	_	-					-
$\frac{1}{16}$ 2 4 2 * $\frac{1}{16}$	1 2	2 9	9	7	8	_	-					-
	2 2	2 8	8	8	8		-					-
	2 3	8 7	7	9	7		-	-	Ι	-	-	-
$\underbrace{1\cdot 3 + 2\cdot 2 + 1\cdot 8}$	+ 2 -	2+4	1.2	+ 2 -	•7+	1 · 2	+ 2	. 3	+1.	9 =	58 = <u>16</u>	≈ 4

- Current (initial) position of filter in input image is in bold.
- Result is written in corresponding position in output image.

イロト 不得 とくほ とくほ とうほ

Correlation and convolution Basics of noise filtering

Application of convolution filter: numerical example 2/2

- Current (next) position of filter in input image is in bold.
- Result is written in corresponding position of output image.
- Input and output are separate matrices!

(日)

Correlation and convolution Basics of noise filtering

Handling border pixels

• For $D_W \times D_W$ mask, width of border margin is $\lfloor D_W/2 \rfloor$ (odd D_W)

 \Rightarrow margin grows with filter size

Options:

- Fill with zeros
 - may introduce strong artificial edges
 - may disturb greyscale normalisation (rescaling to [0,255])
- Fill with the mean value of output image
 - less strong artificial edges
 - does not influence grey-scale normalisation
- Fill with nearest computed value
- Treat input image as periodic (like cylinder), compute result for all pixels

Correlation and convolution Basics of noise filtering

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- 2 Frequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking
- 3 Fast and adaptive filters
 - Separable filters
 - Run filtering
 - Adaptive noise filtering

ヘロト ヘアト ヘビト ヘ

.≣⇒

Correlation and convolution Basics of noise filtering

Types of noise

• Additive picture-independent (white) noise:

$$g(x,y)=f(x,y)+v(x,y)$$

- f(x, y) is input, g(x, y) output image, v(x, y) noise
- typical channel (transmission) noise
- Uncorrelated multiplicative noise:

$$g(x,y)=f(x,y)\cdot v(x,y)$$

- amplitude modulation (variation)
- typical for TV raster lines
- Quantisation noise (error):

$$v_{noise}(x, y) = g_{quantised}(x, y) - f_{original}(x, y)$$

• Salt-and-pepper, or peak noise: Pointwise, uncorrelated random noise

Correlation and convolution Basics of noise filtering

Heuristic noise filtering

- Image enhancement often means 'heuristic' image restoration
 - no explicit noise model assumed
- However, different filters are best suitable for different types of noise
 - mean filter for additive zero-mean noise
 - median filter for salt-and-pepper noise
- \Rightarrow Analysis of noise is desirable
 - Small groups of noisy pixels are easier to remove
 - good estimate of noise-free value when 'good' pixels dominate in window
 - bad estimate when noisy values dominate

æ

Linear smoothing filters Median filter Laplace filter Unsharp masking

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- Prequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking

Fast and adaptive filters

- Separable filters
- Run filtering
- Adaptive noise filtering

(日)

э

Linear smoothing filters Median filter Laplace filter Unsharp masking

Mean filter and box filter

Mean filter:

- Spatial averaging (smoothing) filter
- Non-negative weights that sum to 1

$$0 \le w_{mean}(x, y) \le 1, \quad \sum_{x,y} w_{mean}(x, y) = 1$$

• in practice, use integer weights, then normalise

• Weights do not grow with distance from filter center:

$$w_{mean}(x_1, y_1) \le w_{mean}(x_2, y_2), \text{ if } x_1^2 + y_1^2 > x_2^2 + y_2^2$$

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Linear smoothing filters Median filter Laplace filter Unsharp masking

Box filter

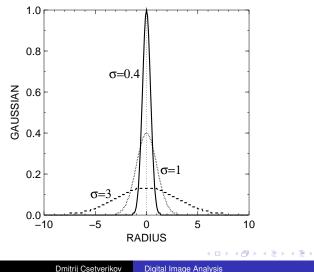
- Mean filter with uniform weights
 - simplest and fastest mean filter
- For $(2M + 1) \times (2N + 1)$ size window

$$g(x,y) = \frac{1}{(2M+1) \times (2N+1)} \sum_{x'=-M}^{M} \sum_{y'=-N}^{N} f(x+x',y+y')$$

イロン 不同 とくほう イヨン

3

Linear smoothing filters Median filter Laplace filter Unsharp masking

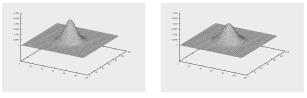

Gaussian filter 1/2

$$w_G(x,y) = \frac{1}{\sum_{(x,y)\in W} e^{-\frac{r^2(x,y)}{2\sigma^2}}} e^{-\frac{r^2(x,y)}{2\sigma^2}}$$

- Weights provided by 2D Gaussian (normal) distribution function.
- $r^2(x, y) = x^2 + y^2$ is squared distance from mask center
 - does not depenge on angle, on r only
 - bell-like, rotation-symmetric shape
- Parameter σ controls size of filter
 - larger $\sigma \Rightarrow$ larger filter and stronger smoothing

Frequently used filters Fast and adaptive filters Linear smoothing filters

Shape of Gaussian filter for growing σ -ra: 2D

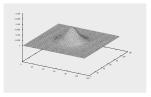


э

Dmitrij Csetverikov

Linear smoothing filters Median filter Laplace filter Unsharp masking

Shape of Gaussian filter for growing σ -ra: 3D



ヘロン ヘアン ヘビン ヘビン

ъ

 $\sigma = 11$

Linear smoothing filters Median filter Laplace filter Unsharp masking

Gaussian filter 2/2

$$w_G(x,y) = \frac{1}{\sum\limits_{(x,y)\in W} e^{-\frac{x^2+y^2}{2\sigma^2}}} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

- When discretised, $w_G(r)$ is cut at $r_{max} = k\sigma$.
 - typically, k = 2.5
 - includes most of bell volume

• Gaussian filter is separable:

$$w_G(x,y) = w_G(x) \cdot w_G(y) \Leftarrow \exp(a+b) = \exp(a) \cdot \exp(b)$$

fast implementation: two 1D filters instead of one 2D filter

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

• $O\left((2r_{max})^2\right)$ ops in 2D, $O(2 \cdot 2r_{max})$ ops in 1D

Linear smoothing filters Median filter Laplace filter Unsharp masking

Use of smoothing

Noise filtering

- box filter reduces zero-mean white noise as positive and negative values nullify each other
- large filter size \Rightarrow greater noise reduction
- Removing fine details
- Subsampling: going to lower resolution
 - average, then decimate (discard rows/columns)
- Obtaining scale-space representation of image
 - sequence of Gaussian-filtered images for growing σ
 - image analysis at varying degree of detail

・ロト ・回ト ・ヨト ・ヨト

Linear smoothing filters Median filter Laplace filter Unsharp masking

Basic properties of smoothing

- Decreases contrast and blurs edges
- Output greylevel range is within input range
- Can produce new greyvalues that did not exist in input
 - smoothing binary image gives greyscale image
- Outliers can strongly affect mean value
 - ⇒ mean is not robust
 - outliers are wrong values, such as peak noise
- Number of operations required by box filter
 - direct implementation: $O(N \cdot N_W)$
 - run filter implementation: O(N)
 - N is image size (area), N_W window size

ヘロト ヘヨト ヘヨト ヘ

Linear smoothing filters Median filter Laplace filter Unsharp masking

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- Prequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking

Fast and adaptive filters

- Separable filters
- Run filtering
- Adaptive noise filtering

ヘロト ヘアト ヘヨト ヘ

э

Linear smoothing filters Median filter Laplace filter Unsharp masking

Nonlinear median filter

- Median filter outputs median of greyvalues in window:
 - sort (rank) the pixels by greyvalue
 - select value which is in centre (middle) of sorted sequence
 - normally, window size is odd: 3×3 , 5×5 , etc.
- Example:
 - nine greyvalues in 3×3 window are

(1, 1, 3, 2, 5, 4, 4, 12, 11)

• the ordered sequence is

```
(1, 1, 2, 3, 4, 4, 5, 11, 12)
```

くロト (過) (目) (日)

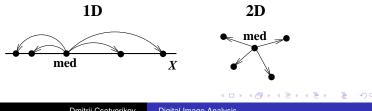
median value is 4

Linear smoothing filters Median filter Laplace filter Unsharp masking

Properties of median 1/2

• Calculating the median is *non-linear* operation: For two sequences *P* and *Q*,

 $Med(\alpha P) = \alpha Med(P)$ but $Med(P+Q) \neq Med(P) + Med(Q)$


- Selecting the median can be viewed as voting procedure
 - during sorting, each pixels votes for a grayvalue
 - median is selected from majority, from the 'middle'
 - extremal values are rejected as not belonging to majority

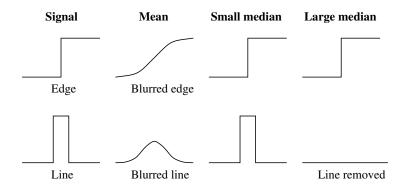
ヘロト ヘアト ヘビト ヘビト

Linear smoothing filters Median filter Laplace filter Unsharp masking

Properties of median 2/2

- Median is a robust statistics
 - outliers do not bias result
 - the breakdown point is when outliers form 50% or more
- Consider numbers as points on *X*. Sum of distances from median to other points is minimal for any 1D point set
 - in other words, median is the innermost point of set
 - this property is equivalent to definition of median
 - used to extend median to higher dimensions, vectors

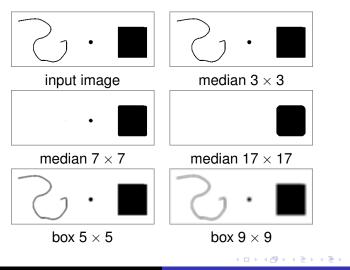
Linear smoothing filters Median filter Laplace filter Unsharp masking


Properties of median filter

- Removes isolated noise pixels
- Does not blur image, but rounds off corners
- Removes thin lines when *filtersize* > 2 × *linewidth*
 - background pixels form majority
- Number of operations required
 - rirect implementation: $O(N \cdot N_W \cdot \log N_W)$
 - run filter implementation: $O(N \cdot \log N_W)$
- Vector median filter enhances vector fields
 - removes vectors incompatible with surrounding vectors

Linear smoothing filters Median filter Laplace filter Unsharp masking

Mean and median filtering of step edge and line

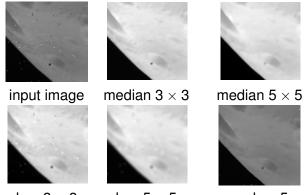

 Line removed when median filter size exceeds twice the line width

イロト イポト イヨト イヨト

э

Linear smoothing filters Median filter Laplace filter Unsharp masking

Comparing median and box filters for bilevel image



Dmitrij Csetverikov Digital Image Analysis

э

Linear smoothing filters Median filter Laplace filter Unsharp masking

Comparison for image with salt-and-pepper noise

- box 3×3
- box 5×5

:5 sy

symm. box 5×5

- The images are gray-scale normalised
- symm. box: adaptive symmetric box filter

Linear smoothing filters Median filter Laplace filter Unsharp masking

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- Prequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking

Fast and adaptive filters

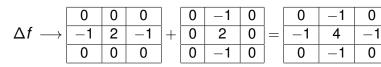
- Separable filters
- Run filtering
- Adaptive noise filtering

ヘロト ヘアト ヘヨト ヘ

э

Laplace filter

Laplace operator and its approximation


Definition of Laplace operator

$$g(x,y) = \Delta f(x,y) \doteq \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f$$

• Design simple 3×3 kernel w_L for Laplace operator approximate derivatives by differences

$$\frac{\partial f}{\partial x} \longrightarrow$$
 $\begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$

$$\frac{\partial^2 f}{\partial x^2} \longrightarrow \boxed{-1 \ | \ 1 \ | \ 0} - \boxed{0 \ | \ -1 \ | \ 1} = \boxed{-1 \ | \ 2 \ | \ -1}$$

0

0

≣⇒

э

Linear smoothing filters Median filter Laplace filter Unsharp masking

Laplace filter and averaging

Normalising the kernel by 4, we have

$$w_L = \Delta f(x, y) \approx f(x, y) - Av(x, y),$$

where Av is average of four neighbours

$$Av(x,y) \doteq \frac{1}{4} \Big[f(x-1,y) + f(x,y-1) + f(x+1,y) + f(x,y+1) \Big]$$

$$\frac{1}{4} \underbrace{\begin{array}{c} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \\ \end{array}}_{4-\text{neighbour version}} \\ 3-\text{neighbour version} \\ 3-\text{neighbour ve$$

ъ

Linear smoothing filters Median filter Laplace filter Unsharp masking

Properties of Laplace filter 1/2

- Close to difference of original image and smoothed image
 - gradual variations subtracted, fine variations remain
 - zero response to non-varying parts of image
- Formally, output range is [-255, 255]
 - difference between pixel and its neighbours is small
 - \Rightarrow in practice, range is narrow
- Enhances intensity variations, fine details
 - contours, spots, thin lines

くロト (過) (目) (日)

Linear smoothing filters Median filter Laplace filter Unsharp masking

Properties of Laplace filter 2/2

- Noise-sensitive: contains second order derivatives
- Usually, used in combinations with smoothing filters
- Laplacian-of-Gaussian (LoG)

 $W_{LoG} = W_G * W_L$

- obtain smooth function before taking derivatives
- less noise-sensitive than Laplace filter
- zero-crossings of LoG are *edges*

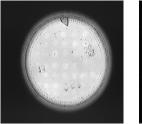
イロト 不得 とくほ とくほとう

э.

Linear smoothing filters Median filter Laplace filter Unsharp masking

Examples of Laplace filtering 1/3

input


Laplace absolute

Laplace shift

- Two different visualisations of output are shown
 - absolute value mapping: $-127 \rightarrow 127, 127 \rightarrow 127$
 - shifted value mapping: $-127 \rightarrow 0,\, 127 \rightarrow 254$
- Depending on mapping, different details are visible

Linear smoothing filters Median filter Laplace filter Unsharp masking

Examples of Laplace filtering 2/3

input

Laplace absolute

Laplace shift

▲ @ ▶ ▲ Ξ

- Fine details are enhanced, including piece of glass and symbols
- Gradual variations are suppressed

Linear smoothing filters Median filter Laplace filter Unsharp masking

Examples of Laplace filtering 3/3

input

Laplace absolute

Laplace shift

< 17 ▶

- Laplace filter is noise-sensitive
- For peak-noisy input without contrast details, the output is mostly noise

Linear smoothing filters Median filter Laplace filter Unsharp masking

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- Prequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking

Fast and adaptive filters

- Separable filters
- Run filtering
- Adaptive noise filtering

ヘロト ヘアト ヘヨト ヘ

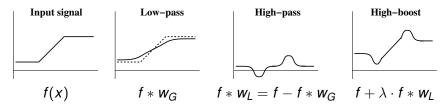
э

Linear smoothing filters Median filter Laplace filter Unsharp masking

Unsharp masking filter

- Goal: Enhance contours and other high-frequency features
- Solution: Add to input image a part of Laplace output
 - Laplace filter amplifies image variations
- Definition:

$$g(x, y) = f(x, y) + \lambda \cdot \Delta f(x, y)$$


- Parameter $\lambda > 0$
 - greater $\lambda \Rightarrow$ stronger emphasis of high-frequency features

くロト (過) (目) (日)

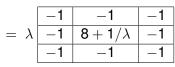
• unsharp masking is a high-boost filter

Linear smoothing filters Median filter Laplace filter Unsharp masking

Meaning of unsharp masking

- Low-pass (mean): Image smoothing
- High-pass (Laplace): Difference between image and output of low-pass
- High-boost (unsharp masking): Part of high-pass added to image
- 'Low-' and 'high-' refer to filter action in *frequency domain*

ヘロト ヘヨト ヘヨト ヘ


Linear smoothing filters Median filter Laplace filter Unsharp masking

Simple convolution kernel for unsharp masking

Using 8-neighbour version of Laplace filter, for $f + \lambda \Delta f$ we have

0	0	0	
0	1	0	+
0	0	0	

$$\begin{array}{c|ccc} -1 & -1 \\ \lambda & -1 & 8 \\ \hline -1 & -1 \\ \end{array}$$

Introducing parameter $\beta = 1/\lambda$ and normalising, we obtain kernel

$$w_U = \frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8+\beta & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

- $0 \le \beta \le 1$; typical values are 0.1–0.2
- Normalisation: largest possible output value is G_{max} (255)
 - other normalisations can also be used

Linear smoothing filters Median filter Laplace filter Unsharp masking

Examples and summary of unsharp masking

image 1

image 2

- Used to enhance contrast, especially in photography
- Enhances high-frequency features, such as edges
- Can amplify noise

Separable filters Run filtering Adaptive noise filtering

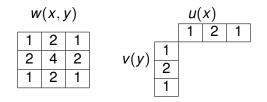
Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- 2 Frequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking
- 3 Fast and adaptive filters
 - Separable filters
 - Run filtering
 - Adaptive noise filtering

ヘロト ヘアト ヘヨト ヘ

э


Separable filters Run filtering Adaptive noise filtering

Filter separability 1/2

Filter can be decomposed into product of 1D filters

$$w(x,y)=u(x)\cdot v(y)$$

- Example of separable filter
 - Each entry of 2D filter matrix is product of corresponding entries of 1D filters

イロト イポト イヨト イヨト

Separable filters Run filtering Adaptive noise filtering

Filter separability 2/2

- Number of operations N_{ops} in each point for $D_W \times D_W$ window
 - original filter: $N_{ops} = O(D_W^2)$
 - separable filter: $N_{ops} = 2 \cdot O(D_W)$
- Gaussian filter and box filter are separable
 - Gaussian $w_G(x, y) = w_G(x) \cdot w_G(y), w_G(x) \propto \exp\left\{-\frac{x^2}{2\sigma^2}\right\}$
 - box filter is product of two unit 1D filters
 - running implementation of box filter is even faster
- Decomposing 2D filter into linear combination of 1D filters
 - use Singular Value Decomposition (SVD)
 - not necessarily faster: depends on number of 1D filters

ヘロン 人間 とくほど くほとう

Separable filters Run filtering Adaptive noise filtering

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- Prequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking
- 3 Fast and adaptive filters
 - Separable filters
 - Run filtering
 - Adaptive noise filtering

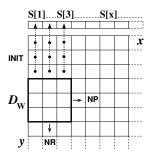
ヘロト ヘアト ヘヨト ヘ

э

Separable filters Run filtering Adaptive noise filtering

Notion of run filtering

- When window moves to next position,
 - do not compute output value from scratch
 - instead, update output value obtained in previous position
- Run filtering solutions exist for different filters
 - box filter
 - median filter
- Efficiency depends on simplicity of updating
 - additive quantities like average are easy to update
 - nonlinear median is more difficult to update
- Run filtering can be extended to windows of more complex shape


◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Separable filters Run filtering Adaptive noise filtering

Run filtering for box filter

- Data structure: array *S*[*x*]
- Initialisation (INIT)
 - for starting row, compute column sums S[x]
- First position in row
 - compute window sum from *S*[*x*]
- Shift in row (NP)
 - update window sum: subtract leaving *S*, adding entering *S*
- Next row (NR):
 - update each S[x]: subtract leaving pixel, add entering pixel

 N_{ops} independent of D_W if image is much larger than window

・ロト ・回ト ・ヨト ・ヨト

Separable filters Run filtering Adaptive noise filtering

Outline

Image filtering

- Correlation and convolution
- Basics of noise filtering
- 2 Frequently used filters
 - Linear smoothing filters
 - Median filter
 - Laplace filter
 - Unsharp masking
- 3 Fast and adaptive filters
 - Separable filters
 - Run filtering
 - Adaptive noise filtering

ヘロト ヘアト ヘヨト ヘ

3

Separable filters Run filtering Adaptive noise filtering

Adaptive neighbourhood selection

- Filters considered up to now are non-adaptive (position-independent):
 - fixed neighbourhood selection procedure
 - fixed function that calculates output value
- Adaptivity means using local context to improve performance of noise filters
 - avoid 'averaging across edges' by mean filter
 - avoid rounding of corners by median filter
- Main cause of these undesirable effects
 - pixels belonging to different classes (distributions) are mixed by filter
 - when window is on contour, object and background pixels are mixed

ヘロト ヘアト ヘビト ヘビト

1

Separable filters Run filtering Adaptive noise filtering

Basic idea

Try to separate

- object pixels from background pixels
- relevant greyvalues from noise
- Adaptivity in neighborhood pixel selection: select relevant pixels
 - until now, we used all pixels of window
 - now, we will select certain pixels
- Adaptivity in function computing output value: none
 - until now, we used fixed functions: mean, median, etc.
 - this will not change

イロト イポト イヨト イヨト

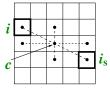
Separable filters Run filtering Adaptive noise filtering

Pixel selection in $n \times n$ window

• Standard neighbourhood

- use all n² pixels
- *k*-nearest neighbours (*k*-NN)
 - select k pixels closest in grey value to central pixel c
 - possible choice $k = n \times \left[\frac{n}{2}\right] + (n-1)$
 - for example: when n = 3, k = 5

• Sigma-nearest neighbours


- select pixel *i* if $|I(i) I(c)| < k \cdot \sigma_{noise}$
- usually, *k* = 2
- σ_{noise} is standard deviation of noise
- \Rightarrow estimated in flat (non-variyng) region of image

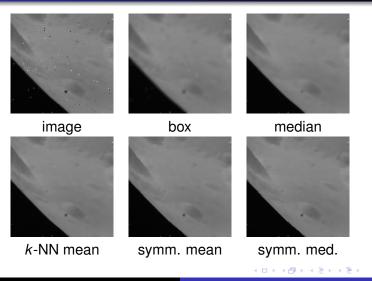
ヘロト 人間 とくほとくほとう

Separable filters Run filtering Adaptive noise filtering

Symmetric nearest neighbors

- Select pixel *i* if $|I(i) I(c)| < |I(i_s) I(c)|$
 - c is central pixel, $\{i, i_s\}$ pair of central-symmetric pixels
- Local context: intensity and geometry taken into account
- Useful in case of edges
 - selects pixels on same side of edge
 - avoids averaging across edge

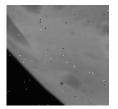
symmetric pixel pair

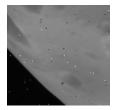


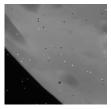
operation on edge

くロト (過) (目) (日)

Separable filters Run filtering Adaptive noise filtering


Comparison of standard and adaptive 5×5 filters




Dmitrij Csetverikov Digital Image Analysis

Separable filters Run filtering Adaptive noise filtering

Sigma filter does not remove peak noise

< 🗇 🕨 🔸

sigma mean 5 \times 5 $\,$ sigma med. 5 \times 5 $\,$ sigma med. 9 \times 9 $\,$

 For peak-noisy pixel *I_{noisy}*(*x*, *y*), interval *I_{noisy}* ± 2*σ_{noise}* does not include noise-free neighbours

• $|I_{noisy} - I_{noisefree}| > 2\sigma_{noise}$

- Peak value Inoisy is selected
 - \Rightarrow noise is not removed