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Motivation

The study of the representation of motion is relevant:

3D rotation using R3×3 ←→ has only 3 DoF. Why?

What is the (continuous) manifold of motion?

Articulated robots.

Autonomous vehicles.

Sensors, uncertainity propagation, Kalman filtering.

Optimisation.

etc.
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Reminders

Reminders:

Vector spaces

Linear independence, Basis, Inner product, Dot product,
Properties

Linear transformations, Matrices

Range, Span, Null space/Kernel, Rank

Eigenvalues and eigenvectors, properties

Symmetric matrices, positive (semi-)definite

Skew-symmetric matrices AT = −A
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Groups

A group is a set G with and operation ◦ : G × G → G for which
the following properties hold.:

∀g1, g2 ∈ G : g1 ◦ g2 ∈ G (closure)

∀g1, g2, g3 ∈ G : (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) (associativity)

∃!e ∈ G ∀g ∈ G : e ◦ g = g ◦ e = g (identity element)

∀g ∈ G ∃g−1 ∈ G : g−1 ◦ g = g ◦ g−1 = e (inverse element)

General and Special Linear groups

general linear group GL(n) = {A ∈ Rn×n : det(A) 6= 0}
GL(n) is a group w.r.t. matrix multiplication

special linear group SL(n) = {A ∈ Rn×n : det(A) = 1}
Note: if A ∈ SL(n), then A−1 ∈ SL(n)
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Matrix representation of groups

Think...

How to represent complex numbers C using real matrices?

... and dual numbers D?

Group homomorphism is an injective map, preserving
composition:

R : G → GL(n) is a group homomorphism, if

if R(e) = In×n and ∀f , g ∈ G : R(f ◦ g) = R(f )R(g).

The Affine group A(n)

Reminder: affine transformations, homogeneous coordinates

for A ∈ GL(n), b ∈ Rn, then

[
A b
0 1

]
∈ GL(n + 1) is an affine

matrix. Affine matrices form a subgroup in GL(n + 1)

Eichhardt 3D Sensing and Sensor Fusion
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The Orthogonal group

The Orthogonal group:

O(n) =
{

R ∈ GL(n) : RTR = In×n
}

Special Orthogonal group

Removing mirroring, by adding the constraint det(R) = 1:

SO(n) = O(n) ∩ SL(n)

Note: SO(3) is the group of all 3D rotation matrices.

Eichhardt 3D Sensing and Sensor Fusion
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The Euclidean group

The Euclidean group:

E (n) =

{[
R t
0 1

]
: R ∈ O(n), t ∈ Rn

}
⊂ GL(n + 1)

The Special Euclidean group SE(n)

SE (n) =

{[
R t
0 1

]
: R ∈ SO(n), t ∈ Rn

}
⊂ GL(n + 1)

Note: SE (3) is the group of rigid body motions in R3.
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Motivation (1/2): Skew-symmetric matrices & cross
product

The cross product can be defined between two vectors u, v ∈ R3:
u× v ∈ R3, furthermore

u× v = ûv,

where û is a skew-symmetric matrix

û = [u]× =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ R3×3

The unary operator .̂ is an isomorphism, between R3 and
so(3) ⊂ R3×3, the set of all skew-symmetric matrices.

Note that A ∈ so(n) iff A = −AT.

Eichhardt 3D Sensing and Sensor Fusion
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Motivation (2/2): Infinitesimal rotation

Remark

Skew-symmetric matrices so(n) = {ŵ : w ∈ Rn} ⊂ Rn×n form the
tangent space to the orthogonal group O(n), at In×n. In that
sense, so(n) can be thought of as infinitesimal rotations.

Let R(t) ∈ R→ SO(3), R(0) = I3×3 be a continuously
differentiable family of rotation matrices. Let Ṙ denote d

dtR(t).
As R(t)R(t)T = I3×3 for all t, differentiating w.r.t. t gives:

ṘRT + RṘT = 0

This implies that ṘRT is skew-symmetric, and that
∃w ∈ R→ so(3), for which ŵ(t) = Ṙ(t)R(t)T. Therefore, the
first-order approximation of R at t = 0 is ŵ(0) ∈ so(3):

R(0 + δ) ≈ I3×3 + ŵ(0)δ.
Eichhardt 3D Sensing and Sensor Fusion
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Lie group, Lie algebra

Remark

The group SO(3) is a Lie group, while the space so(3) is its
corresponding Lie algebra. The latter is the tangent space at the
identity of SO(3).

A Lie group is simultaneously a group and a smooth differentiable
manifold, with smooth product (and inverse) operation.

A Lie algebra V is a vector space over a field K , with the
operation [., .] : V × V → V (the so-called commutator- or
Lie-bracket). Thus, [u, v] = uv − vu, ∀u, v ∈ V .

The Lie group is a complicated nonlinear object, while its Lie
algebra is just a vector space: it is usually simpler to work with.

Eichhardt 3D Sensing and Sensor Fusion
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Maps for a Lie group

Assume a Lie group (manifold) G and the corresponding Lie
algebra (local tangent space) g .

Exponential map

exp: A map from the tangent space g to the manifold G .

exp : g → G

Logarithmic map

log: Inverse map, from the manifold to the tangent space.

log : G → g

We’ll further investigate these concepts for specific Lie groups.

Eichhardt 3D Sensing and Sensor Fusion
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The relation of Lie group and Lie algebra

The Lie algebra TEM (red plane) to the Lie group’s manifold M
(blue sphere) at the identity (here denoted as E)1.

Each element in TEM has an equivalent on M: e.g., vt produces
path exp(vt), and log(X) corresponds to X. Notice the geodesics.

1Solà et al.– A micro Lie theory for state estimation in robotics
Eichhardt 3D Sensing and Sensor Fusion
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Just when you started having too much fun...

Non-distributiveness – Baker-Campbell-Hausdorff (BCH) formula

In general, exp(u + v) 6= exp(u) exp(v) unless u and v commute
(uv = vu). Using the Baker-Campbell-Hausdorff (BCH) formula:

exp(u) exp(v) = exp(u+v+
1

2
[u, v]+

1

12
[u, [u, v]]− 1

12
[v, [u, v]]+. . . )

Product of exponentials introduces higher-order Lie bracket terms.

Logarithm of a Product

log(exp(u) exp(v)) ≈ u + v +
1

2
[u, v],

where u, v are small. For larger values, use higher-order terms from
the BCH formula.

Eichhardt 3D Sensing and Sensor Fusion
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Just when you started having too much fun...

Besides Non-distributiveness, and the logarithm of the product,
there are other very important properties for

the Lie bracket2,

logarithm and exponential3,

both in the framework of the Lie algebra and outside of it (e.g. the
log and exp of matrices).

2https://en.wikipedia.org/wiki/Lie_bracket_of_vector_fields
3https://en.wikipedia.org/wiki/Exponential_map_(Lie_theory)
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Remark: The use of Lie algebras

Sophus Lie (1841 - 1899) originally formulated the related
concepts while creating the theory of continuous symmetry and
applied it to the geometric problems and differential equations.

Today, Lie algebras have numerous applications in the fields of
mathematics, physics, and among else, even computer/robot vision
and control. A few applications in vision:

interpolation,

(on-manifold) optimisation,

tracking,

statistics,

etc.
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Group action

Lie groups have the power to transform elements of other sets
(e.g., rotation, translation, scaling of vectors etc.).

Let G be a Lie group, and V some set. The group action is a
mapping

· : G × V → V.

The group action must satisfy the following axioms:

Identity: I · v = v

Compatibility: (X ◦ Y) · v = X · (Y · v)

Eichhardt 3D Sensing and Sensor Fusion
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Group action: Examples

On SO(n) rotation of a vector. Let R ∈ SO(n), x ∈ Rn:

R · x .
= Rx.

Rigid motion of a point. Let H ∈ SE (n), x ∈ Rn:

H · x .
= Rx + t.

On S3 rotation of a vector. Let q be a unit quaternion, x ∈ R3:

q · x .
= qxq∗.

Eichhardt 3D Sensing and Sensor Fusion
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Notation: Capital Exp and Log maps

The parameters of the exp map and the result of the log are in the
Lie algebra. However, there’s usually a compact representation,
e.g., for skew-symmetric matrices.

Assume a Lie group G and the corresponding Lie algebra g .
The compact representation of elements of g is in Rm:

if û ∈ g then u ∈ Rm.

Capital Exp and Log maps consider Rm:

Exp : Rm → G , so that Exp(u)
.

= exp(û),

Log : G → Rm, so that L̂og(X) = Log(X)∧
.

= log(X).

Eichhardt 3D Sensing and Sensor Fusion
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Plus and minus operators

Nonlinear mapping operators, boxplus and boxminus can express
addition and subtraction for X,Y ∈M and û ∈ TEM:

X � u
.

= Exp(u) ◦ X

X � Y
.

= Log(X ◦ Y−1)

Note that (X � Y)∧ ∈ TEM, i.e., in the tangential space at the
identity E – in the global frame.

Also note that some works4 use local frames, i.e., defining the
(right) minus operator as Log(X−1 ◦ Y)∧ ∈ TXM.

4E.g., J. Sola et al.– A micro Lie theory for state estimation in robotics
Eichhardt 3D Sensing and Sensor Fusion
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The Exponential map

Assume the following differential equation system, where ŵ is
constant in time:

Ṙ(t) = ŵR(t),

R(0) = I3×3.

Its solution is

R(t) = eŵt =
∞∑
n=0

1

n!
(ŵt)n = I3×3 + ŵt +

1

2
(ŵt)2 + . . . ,

that is, a rotation around axis w ∈ R3 by an angle t, given
‖w‖ = 1. Alternatively, embed t into w by setting ‖w‖ = t.

The matrix exponential defines a Lie algebra to Lie group mapping:

exp : so(3)→ SO(3), exp(ŵ) = eŵ.

Eichhardt 3D Sensing and Sensor Fusion
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Rodrigues’ formula

Analogous to the Euler equation e iφ = cosφ+ i sin(φ),∀φ ∈ R, we
can use the Rodrigues’ formula for the elements of so(3):

eŵ = I3×3 +
ŵ

|w|
sin(|w|) +

ŵ2

|w|2
(1− cos(|w|)) .

Eichhardt 3D Sensing and Sensor Fusion
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The Logarithmic map

An inverse function to the exponential map can also be defined,
that is, the logarithm.
For all R ∈ SO(3): ∃w ∈ R3 such that R = exp(ŵ). Let us denote
this element by ŵ = log R. If R 6= I3×3, then

|w| = cos−1

(
tr(R)− 1

2

)
,

w

|w|
=

1

2 sin(|w|)

r32 − r23

r13 − r31

r21 − r12

 .
Note that for R = I3×3, |w| = 0. Also note that this representation
is periodic w.r.t. the angle, by multiplies of 2π, i.e., not unique.

Eichhardt 3D Sensing and Sensor Fusion
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Rotations in 2D: SO(2)

The Lie algebra so(2) corresponding to SO(2) is generated by a
single skew-symmetric matrix:

exp

(
φ

[
0 −1
1 0

])
=

[
cosφ − sinφ
sinφ cosφ

]

Eichhardt 3D Sensing and Sensor Fusion
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Other representations of rotation: Lie-Cartan coordinates

Lie-Cartan coordinates of the first kind

Given a basis ŵ1, ŵ2, ŵ3 ∈ so(3) we can define the mapping

α : (α1, α2, α3)→ exp (α1ŵ1 + α2ŵ2 + α3ŵ3) .

(α1, α2, α3) are the Lie-Cartan coordinates of the first kind
relative to the above basis.

Lie-Cartan coordinates of the second kind

β : (β1, β2, β3)→ exp (β1ŵ1) exp (β2ŵ2) exp (β3ŵ3) ,

where w1 = (0, 0, 1)T, w2 = (0, 1, 0)T, and w3 = (1, 0, 0)T.
(β1, β2, β3) are Euler angles, rotations around the x , y , z axes.

The parameterizations are only correct for a portion of SO(3)!
Eichhardt 3D Sensing and Sensor Fusion
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Other representations of rotation: Unit quaternions

Compared to rotation matrices, they are more compact,
numerically more stable, and more efficient.

Unit quaternions

Given the angle φ of rotation around the unit axis (x , y , z) can be
represented as:

q =
[
cos(φ/2), sin(φ/2)x , sin(φ/2)y , sin(φ/2)z

]
∈ Q

Eichhardt 3D Sensing and Sensor Fusion
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Comparing some representations of rotation

Method mul add/sub total ops.
Matrices 27 18 45

Quaternions 16 12 28
Performance of rotation chaining.

Method mul add/sub sin/cos total ops.
Matrices 9 6 0 15

Quaternions 15 15 0 30
Euler angles 18 12 2 30+2

Performance of vector rotation.

Note that one may convert to matrix representation to leverage the
cost of vector rotation.

Eichhardt 3D Sensing and Sensor Fusion
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Estimating transformation between point sets (1/2)

Given xi , yi ∈ R3 (i ∈ {1 . . . n}), find R ∈ SO(3), t ∈ R3, c ∈ R:

min
c,R,t

1

n

n∑
i=1

||yi − (cRxi + t)||22

Multiple approaches exist:
SVD, Dual Quaternion, Unit Quaternion, Orthogonal matrices, ...

SVD:

Umeyama’s LSq algorithm5

E.g.: Eigen library (C++): Eigen::umeyama()

5Umeyama, S. Least-squares estimation of transformation parameters
between two point patterns. (1991) IEEE TPAMI, (4), 376-380. umeyama.pdf
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Estimating transformation between point sets (2/2)

Refined estimate can be achieved, if needed:

1 First, estimate rotation using e.g. Umeyama’s method.

2 Then, perform non-linear refinement.

Notes on non-linear refinement:

Possible parameterizations:
Unit quaternions, Euler angles, SO(3)+R3, SE(3) or Sim(3).

Approach:
1 Perform refinement using corresp. Lie algebra.
2 Update transformation using the boxplus operator.

More robust cost functions can also be applied.

Eichhardt 3D Sensing and Sensor Fusion
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Lie algebra se(3) and the twist

As we did for rotations, we can define a continuous family of rigid
body motions g(t) : R→ SE (3).

g(t) =

[
R(t) T (t)

0 1

]
∈ R4×4

Considering ξ̂(t) = ġ(t)g−1(t), we have

ξ̂ =

[
ṘRT Ṫ − ṘRTT

0 0

]
=

[
ŵ v
0 0

]
∈ R4×4,

where v = Ṫ − ŵT .
Thus, ġ = ġg−1g = ξ̂g : the matrix ξ̂ can be viewed as a tangent
vector to curve g , a so-called twist.

Eichhardt 3D Sensing and Sensor Fusion
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Lie algebra se(3) and the twist vector

The set of all twists forms a tangent space to the Lie group SE (3),
the Lie algebra se(3) is defined as follows:

se(3) =

{[
ŵ v
0 0

]
: ŵ ∈ so(3), v ∈ R3

}
The twist vector ξ ∈ R6 corresponds to the twist ξ̂ ∈ se(3):

ξ =

[
v
w

]
←→

[
ŵ v
0 0

]
= ξ̂
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Exponential and Logarithmic maps for SE (3)

Let ξ =

[
v
w

]
∈ R6 be the vector tangent space element

corresponding to M ∈ SE (3):

M = Exp(ξ)
.

=

[
Exp(w) V(w)v

0 1

]
,

ξ = Log(M)
.

=

[
V−1(w)T

Log(R)

]
,

where

V(w) = V(θu) = I3×3 +
1− cos θ

θ
û +

θ − sin θ

θ
û2.
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Representation of camera motion

Let’s consider and element of P ∈ SE (3) to represent camera
motion.

Often called the camera pose.

By convention, a world frame to local frame transformation.

Assume a camera projection function
p : R3 → R2 – a mapping from local frame to 2D image space.

To map world frame point X ∈ R3 to image space:

x = p(P · X) ∈ R2.
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Interpolation on the Manifold

Let G be a Lie group6, with respective log and exp maps to the
respective Lie algebra and back. Given two elements X,Y ∈ G
(e.g. elements SO(3)) and a coefficient t ∈ [0, 1], we can define
interpolation as follows:

exp
(
t · log

(
Y · X−1

))
· X = X � [t · (Y � X)] .

Note that the interpolation always moves along the ‘shortest’
transformation in the Lie group (i.e., it is moving along a geodesic
of the manifold).

6Remember, a Lie group is also a smooth manifold.
Eichhardt 3D Sensing and Sensor Fusion
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Averaging on Manifolds

Averaging in Euclidean spaces works fine, using the usual definition

q̄ = arg min
p

N∑
i=1

‖p− qi‖2
2 =

1

N

N∑
i=1

qi ,

however, not in non-linear manifolds.
Given a metric d (x, y), the average can be defined as

p̄ = arg min
p

N∑
i=1

d (p,qi )
2

E.g. the length of the shortest geodesic:

dR (A,B) = ‖A � B‖2 =
1√
2

∥∥log
(
A−1B

)∥∥
F
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Uncertain transformations: Sampling 3D rotations

To encode Gaussian distribution, choose a mean R ∈ SO(3) and a
covariance matrix Σ ∈ so(3).

Now draw a sample S using the mean-covariance pair (R,Σ):

w ∼ N (0,Σ),

S = R � w = Exp(w) · R.
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Uncertain transformations: Composition

Given two mean-covariance pairs (R0,Σ0) and (R1,Σ1), the
composition, i.e. distribution of rotations by first transforming by
R0 and then by R1 is given by:

(R1,Σ1) ◦ (R0,Σ0) = (R1 · R0,Σ1 + R1 ·Σ0 · RT
1 ).
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Uncertain transformations: Bayesian combination

The Bayesian combination of (R0,Σ0) and (R1,Σ1) is (Rc ,Σc):

1 Find the deviation between the two means in the tangent
space.

2 Weight by the information of the two estimates.

Σc =
(
Σ−1

0 + Σ−1
1

)−1
,

Rc = R0 �
(
Σc ·Σ−1

1 · (R1 � R0)
)
.
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Extended Kalman filtering (EKF) in SO(3)

Let R0 and Σ0 be the prior state and state covariance. Assuming a
trivial measurement Jacobian (identity matrix), a tangent vector v
is the innovation.

Kalman gain: K
.

= Σ0(Σ0 + Σ1)−1,

Kalman update (cov.): Σc = (I3×3 −K) ·Σ0,

Kalman update (mean): Rc = R0 � (K · v).

Note that mathematical identity to Bayesian combination can be
proven, considering v=R1 � R0 is the innovation, i.e., the
measurement update.
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Differentiating rotation (in SO(3))

1) Consider ŵ ∈ so(3) skew-symmetric matrix. (Remember,
w ∈ R3.)

∂ŵ

∂w
=

0 0 0
0 0 −1
0 1 0

 ,
 0 0 1

0 0 0
−1 0 0

 ,
0 −1 0

1 0 0
0 0 0

 .

2) Since Exp(w) = I3×3 + ŵ +O(ŵ2),

∂

∂w
Exp(w) =

∂ŵ

∂w
.

3) Let R ∈ SO(3). Analogous to random variables, perturbations
of group elements are expressed in the local tangential space.

∂R

∂R
=

∂

∂w

∣∣∣∣
w=0

(R � w) =
∂

∂w

∣∣∣∣
w=0

Exp(w)R.
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Differentiating the group action (in SO(3))

Let y = R · x, where R ∈ SO(3) and · : SO(3)× R3 → R3 is the
group action (i.e., matrix-vector multiplication).
Differentiating by the vector to be rotated x yields:

∂y

∂x
= R.

To differentiate by R, first perturb R locally by ŵ ∈ so(3), the diff.
by w around w = 0 (around the zero perturbation):

∂y

∂R
=

∂

∂w

∣∣∣∣
w=0

(R � w) · x =
∂

∂w

∣∣∣∣
w=0

Exp(w) · y = [−y]× .
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On-manifold optimisation

T.B.A. – TODO

Objective: maximize the likelihood of observations

Approximate residuals by first-order Taylor expansion

Locally optimize for the parameter update

Iterate until convergence

Compare: Gauss-Newton vs Levenberg-Marquardt

Also: Robust Cost functions
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Software

g2o – A General Framework for Graph Optimisation (C++)

Rainer Kuemmerle et al.– github.com/RainerKuemmerle/g2o

optimizing graph-based nonlinear error functions

E.g., SLAM, Bundle Adjustment, etc.

MRPT – Mobile Robot Programming Toolkit

www.mrpt.org

Libraries for on-manifold operations (template expressions,
automatic differentiation):

Sophus – github.com/strasdat/Sophus

Wave geometry – github.com/wavelab/wave geometry

Kindr – Kinematics and Dynamics for Robotics
github.com/ANYbotics/kindr [docs]

etc.
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Readings

J. Solà et al.– A micro Lie theory for state estimation in
robotics (2018) [pdf]

J. L. Blanco Claraco –

Non-Euclidean manifolds in robotics and computer vision:
why should we care? (2013) [pdf]
A tutorial on SE(3) transformation parameterizations and
on-manifold optimisation (2019) [pdf]

Various documents found on Ethan Eade’s webpage [www]

L. Koppel and S. L. Waslander – Manifold Geometry with
Fast Automatic Derivatives and Coordinate Frame
Semantics Checking in C++ (2013) [pdf]
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