Image and Video Analysis

Dmitrij Csetverikov

Eötvös Loránd University, Budapest, Hungary csetverikov@inf.elte.hu csetverikov@sztaki.hu

Faculty of Informatics

イロト イポト イヨト イヨト

э

Detection of curves of known shape

Challenges of model fitting

Pough Transform for straight lines

- Hough Transform for circles
 - Examples of circle detection
- 4 Other versions of Hough Transform
 - Summary of Hough Transform

▲ 🗇 ▶ → 三 ▶ →

Model fitting of multiple structures 1/2

Image can contains various structures

shapes, curves

Chicken-and-egg problem

- \rightarrow for model estimation: segment image
- $ightarrow\,$ for segmentation: assign model to data
- Robustness to outliers
 - gross outliers: do not fit either of structures
 - pseudo outliers: do not fit selected structure
 - \rightarrow but fit other structure

・ 同 ト ・ ヨ ト ・ ヨ ト

Model fitting of multiple structures 2/2

- Robustness to missing, noisy data
 - occlusions
 - missing measurements
 - distortions, noise
- The problem arises in many important applications, e.g.,
 - homography estimation
 - 3D object segmentation
 - motion segmentation
 - shape and curve detection

イロト イポト イヨト イヨト

Non-parametric methods

RANSAC

- consensus: single model
- Multi-RANSAC
 - consensus: extension to multiple models
- FLoSS
 - consensus: multiple-model iterative
- RHA
 - preference analysis: multiple models
- J- and T-Linkage
 - preference analysis, clustering: multiple models

・ロト ・回ト ・ヨト ・ヨト

Parametric methods

- Hough Transform
 - voting: single model
- Generalized Hough Transform
 - voting, template matching: single model
- Randomized Hough Transform
 - RANSAC-like: multiple models

・ 回 ト ・ ヨ ト ・ ヨ ト

Notion of Hough Transform (HT)

- Detection of given shapes and curves
- Shapes or curves defined analytically
 - straight line
 - circle, ellipse, etc.
- Shapes or curves defined by sample pattern
 - arbitrary smooth shape or curve
 - fixed orientation and scale

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Original Hough Transform

Paul Hough

- worked on track detection of particles in bubble chamber
- in 1962, obtained USA pattent for transform
- Applicable to parameterized straight lines
- Voting procedure
 - points vote for straight lines crossing them
- Image space → parameter space (accumulator array)
- Clustering in parameter space \longrightarrow straight lines
 - without endpoints

◆□ → ◆◎ → ◆臣 → ◆臣 → ○

Modifications of Hough Transform

- Use of edge orientations
- More complex shapes and curves
 - e.g., non-analytically defined shapes
- Joint handling of different shapes
- Optimal resolution of parameter space
- Multiresolution procedures

・ 同 ト ・ ヨ ト ・ ヨ ト

Straight line in image and parameter spaces

- (a) Equation of line in **image space**: y = mx + c
- (b) Equation in parameter space: c = -mx + y
 - voting: point in Image sp. → straight line in Parameter sp.
 - \rightarrow generate line in accumulator, increment counters (cells)
 - line AB in I-space \longrightarrow crossing of two lines in P-space

Simple example of detection in polar coordinates

- y = mx + c not really good: $m, c \in [-\infty, \infty]$
- Polar coordinate version: $r = x \cos \theta + y \sin \theta$
 - variables in finite domains \longrightarrow discrete accumulator array
 - sinusoids instead of straight lines
- Processing of filled accumulator array
 - local maxima above lower limit (threshold parameter)
 - \rightarrow fantom lines possible

¹Source: homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

< 🗇 🕨

Using edge orientation

Parameterization of straight line I:

- θ : angle of normal **n** ($||\mathbf{n}|| = 1$)
- d: distance to line

< 🗇 🕨

- In edge map, (x, y): edge position, θ : gradient direction
- Every small segment of line votes for **point** in space θ, d
 - ightarrow every edge votes for point in accumulator

• $\theta = \arctan n_y / n_x$, $d = xn_x + yn_y$

- Number of operations decreases drastically, but:
 - inaccuracy of edge angle must be taken into account
 - \rightarrow for large *d*, no distinct cluster in accumulator

Examples of circle detection

Circle detection using edges

(a) Given radius

- increment two cells in accumulator
- imprecise edge direction \longrightarrow indistinct cell cluster
- (b) Radii in range $[R_{min}, R_{max}]$
 - increment cells on two symmetric segments of straight line
 - length of generated segments: R_{max} R_{min}

Examples of circle detection

Outline

2 Hough Transform for straight lines

- Hough Transform for circles
 - Examples of circle detection
 - Other versions of Hough Transform
 Summary of Hough Transform

イロト イヨト イヨト イ

ъ

Examples of circle detection

Regular circles 1/2

input image

edge map

accumulator image

ъ

ヘロト ヘアト ヘヨト ヘ

- Edge detection: 7 × 7-es Canny operator
 - \rightarrow directions of edge normals
- Processed, normalized accumulator image
 - maximum value \longrightarrow 255

Examples of circle detection

Regular circles 2/2

- Centers of circles: binarized (Otsu), thinned accumulator
- Blob detection in scale-space (size: 30 35 pixels)
- Hough-positions are more precise (?)

< 🗇 >

Examples of circle detection

Blood cells 1/2

input image

edge map

accumulator image

- Edge detection: 7 × 7-es Canny operator
- Processed, normalized accumulator image
 - smoothing by 5 × 5 box filter
 - maximum value \longrightarrow 255

Examples of circle detection

Blood cells 2/2

centers of circles

dark blobs

- Right: size-invariant blob detection in scale-space
 - similar results
- Many cells are rather ellipses than circles
 - \rightarrow imprecise, blurred centers

Examples of circle detection

Cells 1/2

input image

< 🗇 🕨 🔸

- Low contrast in some cells \longrightarrow missing contours
 - ightarrow lower accumulator value \longrightarrow noise sensitivity
- Light cell borders —> double contours
 - does not cause problem

Examples of circle detection

Cells 2/2

centers of circles

light blobs

- Many cells are rather ellipses than circles
 - \rightarrow imprecise, blurred centers
- Right: size-invariant light blob detection
 - more precise, more cells found
 - but more false detections (?)

Examples of circle detection

Cable cross-section 1/2

input image

edge map

イロト イポト イヨト イヨト

- Low contrast \longrightarrow missing contours
- Cabel components are deformed circles
 - ightarrow noise sensitivity, imprecision

Examples of circle detection

Cable cross-section 2/2

accumulator image

centers of circles

ヘロト ヘワト ヘビト ヘビト

- Many cable components lost
 - increase detectioni rate (low threshold) \longrightarrow false detections
- Blob detector not applicable here
 - touching components
 - no background around them

Directions of development

- Handling more complex shapes and curves
 - curves not specified analitically
 - ightarrow Generalized Hough Transform
- Joint handling of different shapes
 - ightarrow Randomized Hough transform
- Optimal resolution of accumulator array
 - → multiresolution procedures

・ 同 ト ・ ヨ ト ・ ヨ ト

Operation principles of Generalized HT (GHT) 1/2

Step 1. Scan template shape and form *R*-table

- Select reference point (x_c, y_c) within template shape
 - e.g., centroid
- Possibly, several radii $\mathbf{r} = (r, \alpha)$ for same edge direction ϕ_k
 - in different points of shape

ヘロト ヘワト ヘビト ヘビト

Operation principles of Generalized HT (GHT) 2/2

Step 2. Search for given shape in input edge map

- In edge point (x, y) with direction ϕ_k :
- Fill reference point accumulator for every r^k

•
$$x_c = x + r(\phi_k) \cos(\alpha(\phi_k)), y_c = y + r(\phi_k) \sin(\alpha(\phi_k))$$

ヘロト ヘワト ヘビト ヘビト

Randomized HT: Hough meets RANSAC

• RANSAC: RANdom SAmple Consensus

- Both RHT and RANSAC: for parameterized curves
- Randomly select points in number needed to estimate model
 - ightarrow e.g., two points for straight line
- Number of points can be decreased by edge direction data
 - ightarrow e.g., for ellipse: 3 points with edge directions
- Use selected points to vote for model in parameter array

イロン イロン イヨン イヨン

RHT for straight lines

- Parameter array: vector *m*, *c* plus counter *n*
- Map $x_i, y_i \longrightarrow m_i, c_i$
- Merge m_i , c_i with previous m_k , c_k , n_k , k < i
 - → if distance between m_i , c_i and m_k , $c_k < \delta$, → then $n_k \leftarrow n_k + 1$
- If cannot merge, open new cell: m_i , c_i and $n_i = 0$
- Efficient data structure needed for search in parameter array

ヘロト 人間 とくほとく ほとう

Summary of Hough Transform

RHT for ellipse with known edge directions

- Three contour points with tangent directions
- Each bisector points at center
- Two bisectors meet in center, or close to it
 - \rightarrow calculate crossing point and vote for center

Summary of Hough Transform

Outline

- Challenges of model fitting
- Hough Transform for straight lines
- B Hough Transform for circles
 - Examples of circle detection
- 4 Other versions of Hough Transform
 - Summary of Hough Transform

ヘロト ヘアト ヘヨト ヘ

ъ

Advantages of HT

- Robustness to outliers
- Robustness to missing, noisy data
- Efficient use of edge directions
- Shapes specified analytically or by sample
- Joint handling of different models
- RHT: variable resolution of parameter space
 - \rightarrow faster voting

Summary of Hough Transform

イロン イ理 とく ヨン イヨン

Disadvantages of HT

- Images with dense points or edges can pose problems
 random configuration detected as shape or curve
- More parameters \longrightarrow more computation, less robust
- Joint use of edge directions \longrightarrow less precise
- In practice, HT is mainly used for straight lines and circles
- Pseudo outliers can pose problems
 - e.g., low curvature curves in case of straight lines
- Setting optimal resolution of parameter space is not easy

イロト イロト イヨト イヨト