Basic Algorithms for Digital Image Analysis

Dmitrij Csetverikov

Eötvös Loránd University, Budapest, Hungary

csetverikov@inf.elte.hu csetverikov@sztaki.hu

Faculty of Informatics

(日)

ъ

Thresholding

Principles of greyvalue thresholding

- Histogram-based thresholding
- 2 Two methods for threshold selection
 - Otsu's method
 - Histogram modelling by Gaussian distributions
- Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding

▲ @ ▶ ▲ ⊇ ▶

Histogram-based thresholding

Grey-level thresholding

Basic image segmentation technique

- Assumes following conditions
 - scene contains uniformly illuminated, flat surfaces
 - image is set of approximately uniform regions

Goal

 set one or more thresholds which split intensity range into intervals

\Rightarrow define intensity classes

Result

objects labelled by classifying pixel intensities into classes

・ロト ・四ト ・ヨト ・ヨト

 \Rightarrow objects separated from background

Definition of N-level thresholding

Set N − 1 thresholds T_k, k = 1,..., N − 1, N ≥ 2, so that pixel f(x, y) is classified into class n if

$$T_{n-1} \leq f(x,y) < T_n, \quad n=1,\ldots,N$$

• By definition, $T_0 = 0$ and $T_N = G_{max} + 1 = 256$

Illustration of 4-level thresholding. $T_0 = 0$ and $T_4 = 256$. First level is background.

ヘロト 人間 とくほとくほとう

æ

Histogram-based thresholding

Illustration of four-level thresholding

- $T_0 = 0$ and $T_4 = 256$.
- The first level is dark background
- The fourth level is the brightest disc

イロト イポト イヨト イヨト

Examples of automatic thresholding into 2 and 3 levels

original image

bilevel thresholding

trilevel thresholding

- Single threshold: *N* = 2
 - bilevel (binary) thresholding, or binarisation
 - ⇒ considered in this course
- Multilevel thresholding: N > 2
 - case N = 3 often called trilevel

Outline

- 2 Two methods for threshold selection
 - Otsu's method
 - Histogram modelling by Gaussian distributions
- 3 Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding

< ロ > < 同 > < 三 >

Histogram-based thresholding

Grey-level histogram

Occurrence probability of greyvalue k in image

$$P(k) = \frac{n_k}{n}$$

Histogram-based thresholding

- n_k is number of pixels with greyvalue k = 0, 1, ..., 255
- n is total number of pixels in image
- $\Rightarrow P(k)$ shows how frequently k occurs in image
- Calculation simple and fast
 - initialise p[k] = 0
 - scan image, for greyvalue k set $p[k] \leftarrow p[k] + 1$
 - after scan, normalise P[k] = p[k]/n

ヘロト 人間 とくほとくほとう

Histogram-based thresholding

Basic types of histograms

• Grey-levels

- concentrate at dark end: too dark
- concentrate at light end: too light
- concentrate in middle: narrow dynamic range
- spread over histogram: good contrast

Histogram-based thresholding

Good histograms to threshold

ideal trimodal

real bimodal

(日)

.≣⇒

- Two or more distinct modes (M)
- Definite minima in valleys between modes (V)
- \Rightarrow Intensity classes easy to separate

Histogram-based thresholding

ヘロト 人間 ト ヘヨト ヘヨト

3

Bad histograms to threshold

- Mode at limit of intensity range
 - \Rightarrow histogram hard to model
- Mode not distinct
- Unimodal
 - \Rightarrow hard to threshold, but not hopeless

Histogram-based thresholding

Examples of good and bad threshold selections

- Several thresholds are acceptable
 - near valley (G) in histogram
- Bad thresholds have different effects
 - too low threshold (L) tends to split lines
 - too high threshold (H) tends to merge lines

Otsu's method Histogram modelling by Gaussian distributions

ヘロト ヘアト ヘヨト ヘ

Outline

- Principles of greyvalue thresholding
 Histogram-based thresholding
- 2 Two methods for threshold selection
 - Otsu's method
 - Histogram modelling by Gaussian distributions
 - 3 Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding

Otsu's method Histogram modelling by Gaussian distributions

Maximal separation of classes

- Proposed by N.Otsu (Japan), 1978
- Consider a candidate threshold t
 - t defines two classes of grayvalues
- Define measure of separation of classes
 - distance between classes as function of t
- Find optimal threshold *t_{opt}* that **maximises separation**

Otsu's method Histogram modelling by Gaussian distributions

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Mean and variance of entire histogram

$$\mu = \sum_{i=0}^{255} i P(i) \qquad \sigma^2 = \sum_{i=0}^{255} (i - \mu)^2 P(i)$$

• Range of entire histogram: [0,255]

•
$$P(i)$$
 is normalised: $\sum_{i=0}^{255} P(i) = 1$

Otsu's method Histogram modelling by Gaussian distributions

Mean and variance of class C_1

$$\mu_1(t) = \frac{1}{q_1(t)} \sum_{i=0}^t i P(i) \qquad \sigma_1^2(t) = \frac{1}{q_1(t)} \sum_{i=0}^t \left[i - \mu_1(t) \right]^2 P(i)$$

- Range of class *C*₁: [0, *t*]
- Weight (relative size) of C_1 : $q_1(t) = \sum_{i=0}^{t} P(i)$

Otsu's method Histogram modelling by Gaussian distributions

Mean and variance of class C_2

$$\mu_2(t) = \frac{1}{q_2(t)} \sum_{i=t+1}^{255} i P(i) \qquad \sigma_2^2(t) = \frac{1}{q_2(t)} \sum_{i=t+1}^{255} \left[i - \mu_2(t)\right]^2 P(i)$$

- Range of class *C*₁: [*t* + 1, 255]
- Weight of C_1 : $q_2(t) = \sum_{i=t+1}^{255} P(i); q_2(t) = 1 q_1(t)$

イロト イポト イヨト イヨト

Within- and between-class variances

• For each *t*, total variance σ^2 has two components:

within-class variance

 \Rightarrow weighted sum of two class variances

between-class variance

- \Rightarrow distance between classes
- Within-class variance is

$$\sigma_W^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

$$\Rightarrow$$
 but $\mu = q_1(t)\mu_1(t) + q_2(t)\mu_2(t)$

• Between-class variance is the rest of σ^2

$$\sigma_B^2(t) = \sigma^2 - \sigma_W^2(t)$$

ヘロト 人間 とくほとくほとう

Threshold selection as optimisation problem

It is easy to show that

$$\sigma_B^2(t) = q_1(t)q_2(t) \left[\mu_1(t) - \mu_2(t)\right]^2$$

= $q_1(t) \left[1 - q_1(t)\right] \left[\mu_1(t) - \mu_2(t)\right]^2$ (1)

- Optimal threshold *t_{opt}* best separates the two classes
- $\sigma_W^2(t) + \sigma_B^2(t)$ is constant \longrightarrow two equivalent options:
 - minimise $\sigma_W^2(t)$ as overlap of classes
 - maximise $\sigma_B^2(t)$ as distance between classes
- ⇒ Will use second option

Otsu's method Histogram modelling by Gaussian distributions

イロト イポト イヨト イヨト

Obtaining $\sigma_B^2(t)$

- $\sigma_B^2(t)$ -t can be obtained by definition:
 - for each *t*, calculate the components of eq. (1): $q_1(t), \mu_1(t), \mu_2(t)$
 - \Rightarrow for each *t*, scan histogram
- But faster recursive solution is available:

$$q_{1}(t+1) = q_{1}(t) + P(t+1), \qquad q_{1}(0) = P(0)$$

$$\mu_{1}(t+1) = \frac{q_{1}(t)\mu_{1}(t) + (t+1)P(t+1)}{q_{1}(t+1)}, \quad \mu_{1}(0) = 0 \quad (2)$$

$$\mu_{2}(t+1) = \frac{\mu - q_{1}(t+1)\mu_{1}(t+1)}{1 - q_{1}(t+1)}$$

Otsu's method Histogram modelling by Gaussian distributions

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Summary of Otsu's algorithm

Algoritmus: Otsu threshold selection

- Compute image histogram P(i), calculate μ
- 2 For each 0 < t < G_{max} , recursively compute $q_1(t)$, $\mu_1(t)$ and $\mu_2(t)$ by eq.(2) ¹

Solution
$$\sigma_B^2(t)$$
 by eq.(1)

Select threshold as $t_{opt} = \arg \max_t \sigma_B^2(t)$

¹Skip possible zeroes at beginning of histogram!

Otsu's method Histogram modelling by Gaussian distributions

ヘロト ヘワト ヘビト ヘビト

Properties of Otsu algorithm

Advantages

- general: no specific histogram shape assumed
- works well, stable
- extension to multilevel thresholding possible
 - ⇒ for *N* thresholds and $M = G_{max} + 1$ grey levels, maximum search in array of M^N size

Drawbacks

- assumes that $\sigma_B^2(t)$ is unimodal: not always true
- $\sigma_B^2(t)$ is often flat, false maxima may occur
- tends to artificially enlarge small classes
 - prefers balance of class weights, see cost function 1
 - \Rightarrow small classes may be merged and missed

Otsu's method Histogram modelling by Gaussian distributions

ヘロト ヘアト ヘヨト ヘ

Outline

- Principles of greyvalue thresholding
 Histogram-based thresholding
- 2 Two methods for threshold selection
 - Otsu's method
 - Histogram modelling by Gaussian distributions
 - 3 Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding

Otsu's method Histogram modelling by Gaussian distributions

Modeling histogram by mixture of two Gaussians

• Assume histogram *P*(*i*) is mixture of **two Gaussian** distributions

$$P(i) \approx G(i) \doteq q_1 G_1(i) + q_2 G_2(i)$$

- Fit this model to P(i), estimate parameters of model
- Find optimal threshold **analytically** as valley in model function

ヘロト 人間 とくほとくほとう

Parameterised model distribution

Model distribution is weighted sum of two Gaussians

$$G(i,\mathbf{p}) = \frac{q_1}{\sqrt{2\pi}\sigma_1} e^{-\frac{1}{2}\left(\frac{i-\mu_1}{\sigma_1}\right)^2} + \frac{q_2}{\sqrt{2\pi}\sigma_2} e^{-\frac{1}{2}\left(\frac{i-\mu_2}{\sigma_2}\right)^2}$$
(3)

- ⇒ Frequently used Multiple Gaussian Model, or Gaussian Mixture
 - Has six parameters: $\mathbf{p} = (q_1, q_2, \mu_1, \mu_2, \sigma_1, \sigma_2)$
 - q_1 and q_2 are weights of two Gauss distributions

• $q_1 + q_2 = 1$

- ⇒ five free parameters (degrees of freedom, dof)
- \Rightarrow exclude q_2 , denote $\mathbf{p}' = (q_1, \mu_1, \mu_2, \sigma_1, \sigma_2)$

イロト イポト イヨト イヨト

Fitting model distribution to histogram

• To fit $f(i, \mathbf{p}')$ to P(i), minimise 5-parameter error function

$$C(\mathbf{p}') = \sum_{i=0}^{G_{max}} \left[f(i, \mathbf{p}') - P(i) \right]^2$$
(4)

- \Rightarrow estimate optimal parameters $\hat{\mathbf{p}}$
- A nonlinear minimisation algorithm can be used
 - Newton
 - Marquard-Levenberg
 - stochastic
- Iterative minimisation algorithm can fail to give any result
 - e.g., does not converge
 - ⇒ Gaussian mixture model not applicable
 - \Rightarrow no solution for fitting, no threshold

Otsu's method Histogram modelling by Gaussian distributions

Estimation of initial values of parameters

Source: Earl F. Glynn, Stowers Inst. for Med. Res.

- In case of distinct modes
 - ⇒ moderate overlap of modes
- Mean: μ_1, μ_2
 - positions of dominant maxima in P(i), or
 - positions of dominant valleys in *P*''(*i*)
- Variance: σ₁, σ₂
 - distance between maximum and valley in P'(i) is 2σ

・ロト ・四ト ・ヨト ・ヨト

э

• Weight: *q*₁ = 0.5

Otsu's method Histogram modelling by Gaussian distributions

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Optimal threshold

- Assume model fitting was successful
- ⇒ Optimal parameters were obtained: • $(\hat{q}_1, \hat{q}_2, \hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1, \hat{\sigma}_2)$
 - Now, hogy to calculate optimal threshold?

Otsu's method Histogram modelling by Gaussian distributions

Probability of wrong classification

- $E_1(t)$: pixel from C_1 classified as C_2
- E₂(t): pixel from C₂ classified as C₁

Otsu's method Histogram modelling by Gaussian distributions

Minimisation of classification error

• The error is minimal when

$$\frac{\partial E}{\partial t} = \mathbf{0}$$

It can be proved that optimal threshold topt is solution of

$$At^2 + Bt + C = 0, (5)$$

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

where

$$\begin{array}{rcl} A & = & \hat{\sigma}_{1}^{2} - \hat{\sigma}_{2}^{2} \\ B & = & 2(\hat{\mu}_{1}\hat{\sigma}_{2}^{2} - \hat{\mu}_{2}\hat{\sigma}_{1}^{2}), \\ C & = & \hat{\sigma}_{1}^{2}\hat{\mu}_{2}^{2} - \hat{\sigma}_{2}^{2}\hat{\mu}_{1}^{2} + 2\hat{\sigma}_{1}^{2}\hat{\sigma}_{2}^{2}\ln\left(\frac{\hat{\sigma}_{2}\hat{q}_{1}}{\hat{\sigma}_{1}\hat{q}_{2}}\right) \end{array}$$

Otsu's method Histogram modelling by Gaussian distributions

ヘロト ヘ戸ト ヘヨト ヘヨト

Cases for optimal threshold

Equation has two real roots ∈ [0, 255] ⇒ select root for which error *E*(*t*) is smaller

Equation has no real root ∈ [0, 255] ⇒ no optimal threshold available

• If
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
, single optimal threshold exists:

$$t_{opt} = \frac{\hat{\mu}_1 + \hat{\mu}_2}{2} + \frac{\hat{\sigma}^2}{\hat{\mu}_1 - \hat{\mu}_2} \ln\left(\frac{\hat{q}_1}{\hat{q}_2}\right)$$

イロト イポト イヨト イヨト

Summary of Gaussian Mixture-based threshold selection

Algoritmus: Gaussian threshold selection

- Calculate normalised histogram P(i)
- 2 Minimise fitting error function $C(\mathbf{p}')$ defined by (4) and (3)

 \Rightarrow obtain optimal parameter estimates $\hat{q}_1, \hat{q}_2, \hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1, \hat{\sigma}_2$

- Solve equation (5) for t, obtain two roots
- Consider real roots \in [0, 255] only
 - if single root exists, use it as t_{opt}
 - if two roots exist, select root with smaller E(t)

ヘロト ヘヨト ヘヨト

Properties of Gaussian mixture approach

Advantages

- Reasonably general histogram model
- When model is valid, minimises classification error probability
- May work for small-size classes, as well

Drawbacks

- Real histograms cannot always be modelled by Gaussian mixtures
 - \Rightarrow greyvalues are finite and non-negative
 - \Rightarrow peak close to intenisity limit do not fit Gaussian
- Extension to multithresholding needs simplification
 - \Rightarrow e.g., assumption of well-separated modes
- Difficult to detect close or flat modes

Examples of thresholding Analysis of thresholding

Outline

- Principles of greyvalue thresholding
 Histogram-based thresholding
- 2 Two methods for threshold selection
 - Otsu's method
 - Histogram modelling by Gaussian distributions
- Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding

< ロ > < 同 > < 三 >

Examples of thresholding Analysis of thresholding

Example 1: Good thresholding

- Gaussian algorithm sets lower thresholds in both cases
 - \Rightarrow fits object contours slightly better than Otsu

< (**1**) > < ∃ >

Examples of thresholding Analysis of thresholding

Example 2: Satisfactory results

- Otsu threshold T = 158: exactly in valley
 - \Rightarrow lines are well-separated
- Gaussian threshold T = 199: a bit too high
 - \Rightarrow some lines are not well-separated

▲ (□) ト ▲ 三

Examples of thresholding Analysis of thresholding

Example 3: Gaussian mixture gives poor result

- Otsu algorithm finds small class of pixels (dark discs)
- Gaussian algorithm tries to separate two high peaks formed by background
- ⇒ Selects noisy valley because true class is
 - too small
 - too far away

< (**1**) > < ∃ >

Examples of thresholding Analysis of thresholding

Example 4: Gaussian mixture gives no result

- Only Otsu algorithm produces results
- Gaussian algorithm gives **no results** at all
 - upper row: unimodal histogram, model fitting failed
 - lower row: fitting done, threshold equation has no real root

Examples of thresholding Analysis of thresholding

Outline

- Principles of greyvalue thresholding
 Histogram-based thresholding
- 2 Two methods for threshold selection
 - Otsu's method
 - Histogram modelling by Gaussian distributions
- Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding

< ロ > < 同 > < 三 >

Examples of thresholding Analysis of thresholding

Use of gradient for better mode separation

- Combine intensity and gradient data to improve histogram
- \Rightarrow Better separation of objects and background
 - pixels close to edges have high gradients
 - pixels of object and background have low gradients
 - discard high-gradient pixels when computing histogram

イロト イポト イヨト イヨト

Examples of thresholding Analysis of thresholding

Real-data example of histogram improvement

Dmitrij Csetverikov Digital Image Analysis

Examples of thresholding Analysis of thresholding

Thresholding versus edge detection

signal with trend cannot be thresholded

edges can still be detected

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Thresholding with constant threshold is non-adaptive op.
 - advantage: closed contours guaranteed
 - drawback: not applicable to images with uneven illumination
- Edge detection is local operation adaptive to slow variation of background intensity
 - advantage: applicable to images with uneven illumination
 - drawback: closed contours not guaranteed

Examples of thresholding Analysis of thresholding

Limits of thresholding 1/2

- Merit of thresholding is task-dependent
 - merit is measure of quality
- Merit may involve geometric properties
 - histogram does not account for geometry
 - \Rightarrow crack is detected as bright pixels
 - ⇒ detection is independent of crack shape

▲ 伊 ▶ → ● 三

Examples of thresholding Analysis of thresholding

Limits of thresholding 2/2

stone

< 🗆 > < 🗇 >

- In this example, quality of result is not obvious
- Limits of thresholding
 - no structural informaton taken into account
 - same threshold for arbitrarily swapped pixels
 - \Rightarrow connected regions not guaranteed
- Solution
 - region-oriented methods that use intensity and structure