Basic Algorithms for Digital Image Analysis

Dmitrij Csetverikov

Eötvös Loránd University, Budapest, Hungary csetverikov@inf.elte.hu

csetverikov@inf.elte.hu csetverikov@sztaki.hu

Faculty of Informatics

Edge detection

- Basic image features
- Principles of edge detection
- Gradient edge filters
 - Simple gradient masks
 - Canny edge detector
 - Post-processing of edge detection
- Zero-crossing edge detector
 - Summary of edge detection

Basic image features

- Edge: drastic change of intensity across object contour
 this lecture
- Corner: sharp turn of contour
 - ⇒ next lecture
- Line: narrow, elongated region of approx. constant width and intensity
- Blob: compact image region of approx. constant intensity

Image edges

- Image edges do not necessarily coincide with physical edges
 - image edges are intensity discontinuities
 - physical edges are physical surface discontinuities
 - ⇒ edges of shadows are not surface discontinuities
- Importance of intensity edges
 - human eye detects them 'in hardware', at initial level of visual processing
 - we see differences not absolute values ⇒ adaptivity

Steps of edge detection

- Edge filter responds to edges and yields
 - edge magnitude: strength of edge, local contrast
 - edge orientation: circular data, $\mod \pi$
- Edge localisation (post-processing)
 - removes noisy edges
 - removes 'phantom' edges, obtains thin contours
 - obtains edge map: binary edge image
- ⇒ Noise smoothing may be applied before edge filtering

Example of edge detection by 3×3 Prewitt operator

original image

edge magnitude

edge orientation

edge map

ullet Edge orientation is circular data: flips at 0 and π

upper line

lower line

Intensity profiles of original image along two lines

Edge normal, edge direction and edge orientation

- Edge normal: Direction of maximum intensity variation at edge point
 - unit vector perpendicular to edge
- Edge direction: Direction tangent to contour
 - unit vector parallel to edge
 - convention needed for unumbiguous definition
 - ⇒ 'dark on the left'
- Edge orientation: Circular data interpreted $\mod \pi$

Edge filters

- Edge filters are high-pass filters using spatial derivatives of intensity function to
 - enhance intensity variation across the edge
 - suppress regions of constant intensity
- Operators applied in edge filtering
 - intensity gradient is vector composed of first order partial derivatives:

$$\nabla f(x,y) \doteq \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

 Laplace operator is scalar composed of second order partial derivatives:

$$\Delta f(x,y) \doteq \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Signal and its first and second derivatives

- Edges are located at
 - maxima of absolute value of first derivative
 - zero-crossings of second derivative

Criteria for good edge filters

- No response to flat regions
 - \Rightarrow sum of mask values is zero: $\sum_{r,c} w(r,c) = 0$
- Isotropy
 - response is independent of edge orientation
- Good detection: Minimise probabilities of
 - detecting spurious edges caused by noise (false positives)
 - missing real edges (false negatives)
- Good localisation: Detected edges must be as close as possible to true edges
- Single response: Minimise number of false local maxima around true edge

Illustration to isotropy criterion

- Isotropic filter: uniform edge magnitude for all directions
- Anisotropic edge filter: non-uniform magnitude
- In this illustration, response depends on edge orientation
 - directions 45° · k are amplified
 - directions 90° ⋅ k are suppressed

Illustration to single response criterion

- Same piece of contour detected in windows W1 and W2
 'phantom' edges parallel to 'true' edges, thick contours
- Response depends on overlap between window and contour
- Multiple response typical for all window-based detection tasks

Gradient edge filters

Assume intensity function f(x, y) is sufficiently smooth.

Intensity gradient is vector

$$\nabla f(x,y) \doteq \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(f_x, f_y\right)$$

• Magnitude M(x, y) and orientation $\Theta(x, y)$ of gradient are

$$M(x,y) = \|\nabla f(x,y)\| = \sqrt{f_x^2 + f_y^2}$$

$$\Theta(x,y) = \arctan \frac{f_x}{f_y}$$

 Gradient vector gives direction and magnitude of fastest growth of intensity

Meaning of gradient vector

original image

intensity surface

thresholded image

Intensity surface of edge and its gradient

Outline

- Basic image features
- Principles of edge detection
- Gradient edge filters
 - Simple gradient masks
 - Canny edge detector
 - Post-processing of edge detection
- Zero-crossing edge detector
 - Summary of edge detection

3×3 gradient masks

- Partial derivatives are approximated by finite differences
 - \Rightarrow obtain gradient component masks $f * G_x = f_x$, $f * G_y = f_y$
 - ⇒ Y-masks are 90° rotations of X-masks.
- Frequently used operators
 - Isotropic: less sensitive to edge orientation

Prewitt
$$G_X$$

$$\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{bmatrix}$$

Sobel
$$G_X$$

$$\begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix}$$

Prewitt
$$G_X$$
 Sobel G_X Isotropic G_X

$$\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{2+\sqrt{2}}\begin{bmatrix}
-1 & 0 & 1 \\
-\sqrt{2} & 0 & \sqrt{2} \\
-1 & 0 & 1
\end{bmatrix}$$

Outline

- Basic image features
- Principles of edge detection
- Gradient edge filters
 - Simple gradient masks
 - Canny edge detector
 - Post-processing of edge detection
- Zero-crossing edge detector
 - Summary of edge detection

Properties of Canny edge detector

- Canny edge detector is optimal for noisy step edge if
 - image noise is additive, uncorrelated and Gaussian
 - edge filter is linear
- Optimality criterion combines
 - good detection
 - good localisation
- To satisfy single response criterion, two post-processing operations are used
 - non-maxima suppression
 - hysteresis thresholding
- Original Canny filter is quite complicated
 - more simple approximation is often use

Practical approximation of Canny filter

- Original Canny filter is quite complicated
- Simple practical approximation
 - apply **Gaussian filter** to smooth image: $g(x, y) = f(x, y) * w_G(x, y; \sigma)$
 - \Rightarrow parameter σ determines size of filter
 - apply gradient operator ∇g(x, y) to obtain edge magnitude and orientation
- Scale parameter σ is selected based on
 - desired level of detail: fine edges, global edges
 - noise level
 - localisation-detection trade-off
 - see template matching

Fast implementation of Canny filter

Use associativity of linear filters

$$\nabla \big(f(x,y)*w_G(x,y)\big) = f(x,y)*\big(\nabla w_G(x,y)\big)$$

- Use **separability** of Gaussian $w_G(x, y) = w_G(x) \cdot w_G(y)$
- Obtain resulting vector filter (C is normaliser)

$$\nabla w_G(x,y) = \left(w_G(y) \cdot w_G'(x), w_G(x) \cdot w_G'(y)\right)$$
$$w_G'(x) \doteq \frac{\partial w_G(x)}{\partial x} = C \cdot x \exp\left\{-\frac{x^2}{2\sigma^2}\right\}$$

⇒ Filter is implemented as sequence of 1D masks

Shape of $-w'_G(x)$ for growing σ

Outline

- Basic image features
- Principles of edge detection
- Gradient edge filters
 - Simple gradient masks
 - Canny edge detector
 - Post-processing of edge detection
- Zero-crossing edge detector
 - Summary of edge detection

Edge localisation

- Input
 - edge magnitude (strength) M(x, y)
 - edge orientation $\Theta(x, y)$
- Output
 - binary edge map
 - ⇒ 1 indicates edge, 0 no edge
- Selects maxima of M(x, y) that are true edge pixels
- Usable with any filter that gives magnitude and orientation
 - gradient: Canny, Prewitt
 - non-gradient: Mérő & Vassy
- Includes two basic operations
 - non-maxima suppression to remove 'phantom' edges (considered)
 - hysteresis thresholding to remove noisy maxima (not considered)

Non-maxima suppression

- Due to multiple response, edge magnitude M(x, y) may contain wide ridges around local maxima
- Non-maxima suppression removes non-maxima pixels preserving connectivity of contours

Algoritmus: Non-maxima suppression

- From each position (x, y), step in the two directions **perpendicular** to edge orientation $\Theta(x, y)$
- 2 Denote inital pixel (x, y) by C, the two neighbouring pixels in perpendicular directions by A and B
- If M(A) > M(C) or M(B) > M(C), discard pixel (x, y) by setting M(x, y) = 0

Illustrations of non-maxima suppression

Point deletion

- C is not deleted since M(C) > M(A), M(C) > M(B)
- A, B are deleted since
 M(A) < M(C), M(B) < M(C)

Step across edge

Select right and left neighbours of central pixel if angle of edge normal is in indicated range.

Example of non-maxima suppression

- Non-maxima suppression thins wide contour in edge magnitude image
- Intensity profile along indicated line is shown resized for better visibility

Principles of zero-crossing edge detector

principle of zero-crossing

masks for zero-crossings

- Laplace filter is applied to input image
- Zero-crossings are detected in filtered image
 - use simple masks or
 - local linear approximation and analytic solution

Convolution mask of LoG operator

- Use Laplacian-of-Gaussian (LoG)
 - smooth before taking derivatives
- In polar coordinates r, θ (origin in mask centre)

$$\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

 Use associativity of linear filters and rotation symmetry of Gaussian to obtain (C is normaliser)

$$w_{zc}(r) = C\left(\frac{r^2}{\sigma^2} - 1\right) \exp\left\{\frac{-r^2}{2\sigma^2}\right\}$$

- Discrete zero-crossing mask
 - σ is scale parameter: small σ gives fine edges
 - cut LoG at $k\sigma$ similar to Gaussian
 - \Rightarrow when $\sigma = 4$, size of mask is 40

Shape of LoG for varying σ

- 'Mexican hat'
- σ is scale parameter: level of odetail
 - smaller $\sigma \Rightarrow$ finer edges
- LoG filter is cut at kσ similarly to Gauss filter.
- Size of positive central part: $w = 2\sqrt{2}\sigma$.

DoG filter: Difference-of-Gaussians

- LoG filter is not separable
 - \Rightarrow slow for large σ
- DoG filter is fast separable approximation of LoG filter

$$w_{LoG}(r; \sigma) \approx w_G(r; \sigma_1) - w_G(r; \sigma_2) \doteq w_{DoG}(r; \sigma_1, \sigma_2)$$

- $w_G(r; \sigma_1)$, $w_G(r; \sigma_2)$ two Gauss filters
- in general case, $\sigma \neq \sigma_1 < \sigma_2$
- Often used setting is $\sigma_1 = \sigma$, $\sigma_2 = 1.6\sigma$:

$$w_{DoG}(r; \sigma) = w_G(r; \sigma) - w_G(r; 1.6\sigma)$$

Properties of zero crossing edge detector

- Continuous zero-crossing edge detector always gives closed contours
 - ⇒ continuous surface intersected by plane
 - in principle, this may help in contour following
 - in practice, many spurious loops appear
- Controlled operator size σ
 - natural edge hierarchy within scale-space
 - edges may only merge or disappear at rougher scales
 - ⇒ tree-like structure facilitates structural analysis of image
- Does not provide edge orientation
 - non-maxima suppression and hysteresis threshoding not applicable
 - another post-processing can be used to remove undesirable edges

Examples of edge detection by 15×15 LoG

LoG absolute

Post-processed

No post-processing

- LoG absolute: absolute value of output
 - dark lines are contours
- Post-processed: with removal of weak edges
- No post-processing: without removal of weak edges

Outline

- Basic image features
- Principles of edge detection
- Gradient edge filters
 - Simple gradient masks
 - Canny edge detector
 - Post-processing of edge detection
- Zero-crossing edge detector
 - Summary of edge detection

Comparison of different edge detectors

- LoG result: with removal of weak edges
- Mérő-Vassy: non-gradient edge detector

Summary of edge detection

- 3 × 3 gradient operators (Prewitt, Sobel) are simple and fast. Used when
 - fine edges are only needed
 - noise level is low
- By varying σ parameter, **Canny operator** can be used
 - to detect fine as well as rough edges
 - at different noise levels
- All gradient operators
 - provide edge orientation
 - need localisation: non-maxima suppression, hysteresis threshoding
- Zero-crossing edge detector
 - is supported by neurophysiological experiments
 - was popular in the 1980's
 - today, less frequently used in practice