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Optical flow and motion tracking

Optical flow (OF)
perceived displacements of pixels between two frames
if possible, for all pixels→ (dense) optical flow
small time interval −→ small displacements

Motion tracking
tracking feature points in two or more frames
for feature points→ sparse flow
in principle, displacements can be large
we consider small displacements only

Motion models
shift without distortion
shift with affine distortion
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Notions

I(x(t), t): intensity (image value) in point x at time t
for simplicity: I(x, t) or I

∆x = udt : displacement with velocity vector u during dt

I(x(t) + udt , t + dt): intensity in shifted point at time t + dt

∇ =
(

∂
∂x ,

∂
∂y

)
: gradient operator (vector)

e.g., image gradient: ∇I(x, t) =
(

∂I(x,t)
∂x , ∂I(x,t)

∂y

)
= (Ix , Iy )

Local structure matrix (tensor):

M =

[
I2
x Ix Iy

Ix Iy I2
y

]
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Optical flow equation

Intensity constancy: basic assumption

I(x(t), t) = I(x(t) + udt , t + dt) −→ dI(x(t), y(t), t)
dt

= 0

This leads to optical flow equation (constraint):

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0

In other form:
u∇I + It = 0

Two unknowns: two components of velocity vector u
→ underdetermined system: needs more constraints
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Aperture problem

?
unambiguityambiguity

Motion vectors are ambiguous at edge
locally, normal component can only be determined
tangential component cannot be determined

Normal flow in direction of gradient:

un
.

=
u∇I
‖∇I‖

∇I
‖∇I‖

= − It
‖∇I‖

∇I
‖∇I‖

Motion vectors are unambiguous at corner
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Computing optical flow 1/2

Consider window W (x) around point x
x′ ∈W (x): local coordinates in window

Integrate constraints in W (x)

assume uniform motion of points in W (x)
→ search for u that best fits constraints

Error function in window (IC = Intensity Constancy):

EIC(u) =
∑

x′∈W (x)

[
u∇I(x′, t) + It (x′, t)

]2
Linear estimation for least squares

partial derivative ∇EIC(u) = 0
linear least squares, LLS
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Computing optical flow 2/2

Result of derivation:[ ∑
I2
x

∑
Ix Iy∑

Ix Iy
∑

I2
y

]
u +

[∑
Ix It∑
Iy It

]
= 0

In matrix form M̂ with integrated structure matrix

M̂u + b = 0

Estimation of velocity (displacement):

u = −M̂−1b

Does not work if M̂ is not invertible
if window is not textured enough
e.g., if Ix = 0 or Iy = 0 −→ det M̂ = 0

→ aperture problem
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Example of optical flow: original flow
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Static and incoherently moving points removed
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Motor segmentation by optical flow
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Examples of optical flow

Motor segmentation by optical flow: video 1

Too large velocity and error in beginning of sequence
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Motor segmentation by optical flow: video 2

Correct segmentation at decreased resolution
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Motion tracking by window matching

Motion tracking in distinct feature points
well-detectable, stable feature points
displacement is unambiguous: no aperture problem

→ characteristic neighborhood
Difference between flow and tracking

flow: intensity constancy
tracking: window matching

Tracking window W
t ,x: W
t + dt ,x + ∆x: window most similar to W in vicinity of x

Error function of window matching (SSD):

ESSD(∆x) =
∑
W (x)

[
I(x′ + ∆x, t + dt)− I(x′, t)

]2
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Comparison of error functions

Optical flow: intensity constancy error

EIC(u) =
∑

x′∈W (x)

[
u∇I(x′, t) + It (x′, t)

]2
Motion tracking: matching error

ESSD(∆x) =
∑
W (x)

[
I(x′ + ∆x, t + dt)− I(x′, t)

]2
no derivation
search for minimum in displacement range

Easy to see that
udt = (−M̂−1b)dt ≈ ∆x

→ first order approximation of tracking displacement
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Simplified solution for flow and tracking

Velocity/displacement estimation:

u = ∆x = −M̂−1b

M̂ =

[ ∑
I2
x

∑
Ix Iy∑

Ix Iy
∑

I2
y

]
b =

[∑
Ix It∑
Iy It

]
, It ≈ I1 − I0

Motion tracking: where M̂ is invertible (det M̂ 6= 0)
displacement in point x at time (frame) t
repeat in point x + ∆x at time t + 1

Optical flow: in all image points
M̂ invertible −→ u, M̂ not invertible −→ u = 0
displacement in point x at time (frame) t
repeat in point x at time t + 1
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Tracking motors: no replacement of lost points

initial frame 1 frame 3

frame 1 before filtering
static points
points with erroneous motion (e.g., not motor)

frame 3 after filtering
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Motion tracking of motors: video 1

Too large velocity at beginning of sequence: points lost
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Motion tracking of motors: video 2

Good tracking at decreased resolution
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Fishes in aquarium 1: original video

Pre-processing needed because of bad image quality
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Fishes in aquarium 1: pre-processed video

Person passing aquarium frightens fishes
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Motion tracking with replacement of lost points 1

Both ends of fish tracked. Red cross: lost and replaced point
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Fishes in aquarium 2: original video

Better image quality, no pre-processing needed
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Motion tracking with replacement of lost points 2

Both ends of fish tracked. Red cross: lost and replaced point
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Drone motion tracking: input video

Strongly moving camera, poor image quality and visibility
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Drone motion tracking: tracked points

5 strongest points tracked, lost points replaced
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Drone motion tracking: trajectories

Camera moves, trajectories show relative motion
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Open questions 1/2

In tracking, x + ∆x does not point at pixel −→ rounding
small displacements −→ large relative error

→ subpixel solution needed

Handling large displacements/velocities
linearisation of OF equations assumes small ∆x

→ basic methods handle small displacements (max 2− 3 pix.)
→ multiresolution solutions, image pyramids
→ iterative solutions
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Problems to solve
Subpixel and multiresolution methods
Handling affine distortion and illumination variations

Open questions 2/2

Gradual distortion of pattern in tracking by matching
typically, affine distortion

→ affine matching
→ motion tracking under affine distortion

Optical flow under varying lighting conditions
explicitly: linear intensity variation
implicitly: e.g., by normalized cross-correlation

Optical flow of non-textured regions
extension from textured regions
regularisation by smoothness term

→ variational methods
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Subpixel iterations

Start from equation ∆x = −M̂−1b

Refine by subpixel iteration:

δ0 = −M̂−1e0

δi+1 = −M̂−1ei

∆xi+1 ← ∆xi + δi+1,

where:

e0
.

= b =
∑[

Ix It Iy It
]T

=
∑

∇I(x)It

ei+1 .
=
∑

∇I(x′, t)
[
I(x′ + ∆xi , t + dt)− I(x′, t)

]
x′ + ∆xi is not pixel position −→ intensity interpolation
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Handling large displacements by image pyramids

Build Gaussian pyramid for both frames
large displacements at initial, highest resolution
smaller displacements at decreased resolution

Number of pyramid levels
→ max. displacement at lowest resolution: 2− 3 pixels

Top-down approach
from top of pyramid to its bottom −→ growing resolution
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Sketch of multiresolution methods

Calculate displacement/velocity at lowest resolution
motion tracking: in stable, distinct feature points
optical flow: where only possible

Proceed to next level (double resolution)
extend displacements to this level
compensate motion, work with small differences

→ initial values for iterations
→ iterative refinement

Repeat until bottom of pyramid
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Handling affine distortion

Error function A affine distortion

Eaf (A,∆x) =
∑
W (x)

[
I(Ax′ + ∆x, t + dt)− I(x′, t)

]2
Solution: y = −M−1b

y .
= [d11,d12,d21,d22,d1,d2]T (6D vector)

[d1,d2]T = ∆x: 2D shift vector
elements of matrix dij , D .

= A− I: distortion (I: unit matrix)
M is now 6× 6 matrix with elements

IpIq , pIpIq , pqIpIq , p,q = x , y

b is now 6D vector with elements

pIt Iq
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Handling illumination variations

Linear intensity variation: αI + β

Error function for affine distortion A:

Eafli(A,∆x, α, β) =
∑
W (x)

[
(αI(Ax′ + ∆x, t + dt) + β)− I(x′, t)

]2
two more variables: direct light α and ambient light β

→ 8× 8-os matrix, 8D vectors

More variables −→ more interpretatons of changes
→ displacement can be imprecise

Use simpler model when only possible
e.g., shift and cross-correlation
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Magnitude of optical flow: misty street

1.frame 2.frame

Horn-Schunk cross-correlation
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Optical flow vectors: synthetic images with shadow

1.frame 2.frame

Horn-Schunk cross-correlation ground truth
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Regularization of optical flow

Horn-Schunk error function with smoothness term:

EHS(u) =
(
u∇I(x′, t) + It (x′, t)

)2
+ λ

(
‖ux‖2 + ‖uy‖2

)
λ: Lagrange multiplier (or parameter)

Smoothness term:

‖ux‖2 + ‖uy‖2 = u2
x + u2

y + v2
x + v2

y , u .
= [u, v ]T

ux ,uy : derivatives by x , y

→ Penalizes drastic velocity variations in image plane

Iterative solution
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Variational version of Horn-Schunk

Variational form:

min
u(x)

∫
Ω

EHS(u) dxdy

Ω: complete image domain
→ flow field u(x) that minimizes global error

Extending optical flow to non-textured regions
→ by smoothness constraint

Optical flow is ill-posed problem:
infinite number of solutions or
unstable solution: drastic change for small input variation
e.g., medial axis transform

→ Regularization by smoothness constraint
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Variational methods for optical flow

Various flow error functions used

E(u, v) = ED(u, v , I0, I1, I0p, I1q) + λES(up, vq), p,q = x , y , t
I0
.

= I(x, t), I1
.

= I(x + u, t + 1)

various data terms (optical constraints) ED
various smoothness terms ES

Varying metrics, e.g.,
L1: ‖a− b‖
L2: ‖a− b‖2

L1: more robust, but not always derivable
|x | derivable version:

√
x2 + ε2, ε� 1

L2: derivable, but outlier-sensitive
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Further examples of error functions: Brox et al. (2004)
Data term:

EDB(u, v) = Ψ
(

I1 − I0)2 + γ(∇I1 −∇I0)2
)

Ψ(x2) =
√

x2 + ε2: modified L1
γ: parameter

Role of image gradients ∇I0,∇I1:
robustness to illumination variations

→ less sensitive, than intensity itself

Smoothness term:

ESB(u, v) = Ψ
(
‖∇3u‖2 + ‖∇3v‖2

)
∇3u = [ux ,uy ,ut ]

T : 3D gradient
→ smoothness in image domain, coherence in time
→ no drastic change in time in same point

Dmitrij Csetverikov Image & Video Analysis



Optical flow
Motion tracking

Refinement of basic methods

Problems to solve
Subpixel and multiresolution methods
Handling affine distortion and illumination variations

Major parameters of KLT motion tracker 1/2

Translational mode: no affine matching (default)

Maximum velocity (displacement)
defines number of pyramid levels and border margin

→ cannot handle larger displacements
→ no result in border margins

Number of feature points to track N
N most distinct KLT corner-like points

→ set by λ2, smaller eigenvalue of structure matrix M

Lower limit for λ2
controls sensitivity of corner detector

→ more points for smaller value of limit

Minimum distance between feature points
discard point if stronger point exists within distance

→ stronger: with larger λ2
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Major parameters of KLT motion tracker 2/2

Window size
default: 7× 7 pixels
usual range: 5− 15 pixels
smaller size −→ finer corners, greater noise sensitivity

Lower limit for det M
controls invertibility of M

→ trackability of points

Maximum number of iterations
→ to reach desired matching accuracy

Residue
upper limit of matching error −→ when point gets lost

Replacement of lost points: yes/no
either starts new point, or N decreases
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