Számítógépes látás alapjai

Csetverikov Dmitrij, Hajder Levente

Eötvös Lóránd Egyetem, Informatikai Kar

Csetverikov, Hajder (ELTE Informatikai Kar)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Kétkamerás 3D-s rekonstrukció geometriai alapjai

- Képalapú 3D-s rekonstrukció elvei
- Kétkamerás sztereólátás geometriája
 - Epipoláris geometria
 - Esszenciális mátrix és fundamentális mátrix
 - Fundamentális mátrix becslése
- Standard sztereo és rektifikálás
 - Standard sztereo mélységszámítása
 - Sztereóképek rektifikálása
- 3D-s rekonstrukció sztereóképekból
 - Trianguláció és metrikus rekonstrukció
 - Projektív rekonstrukció
 - Síkmozgás

5 Összefoglaló

Áttekintés

Egy statikus kalibrált kamera 1/2

- Mélység közvetlenül nem mérhető
 - ehhez legalább két kamera kell
- De a felület normálvektora becsülhető
 - normálvektor integrálás —> felület
 - problémák felület-törések esetén
- Intenzítás-változás sima, kevésbé texturált felületen
 - shape from shading
 - intenzítás-változás → felület normálvektora
 - kevésbé robusztus
 - többértelműség lehetséges

A B F A B F

Egy statikus kalibrált kamera 2/2

• Textúra-változás sima, jól texturált felületen

- shape from texture
- textúra-változás → felület normálvektora
- kevésbé robusztus
- Változó fényforrás
 - fotometrikus sztereo (photometric stereo)
 - több mérés felület normálvektora
 - robusztusabb, de itt is lehetséges a többértelműség
 - jó normálvektorok, finom részletek
 - kevésbé precíz pozíciók
- Speciális, részben ismert színtér
 - ház, szoba
 - ightarrow párhuzamos egyenesek, derékszögek
 - ritkán alkalmazható

Sztereólátás elve: video szemléltetés

- 3D-s pont egyértelmű meghatározásához
 - legalább két különböző, kalibrált kamerakép szükséges
 - a pontot azonosítani (megfeleltetni) kell a kameraképeken
- Az eljárást triangulációnak hívják

< ロ > < 同 > < 回 > < 回 >

Standard sztereo

- Két azonos, kalibrált kamera
- Párhuzamos optikai tengelyek
- Közös képsík, a képek alsó és felső határegyenesei megegyeznek.
- Kisebb, ismert bázistávolság (a két kamera között)
 - narrow baseline
- Működési elvek
 - a két kép (pontjainak) megfeleltetése
 - a mélység meghatározása triangulációval
- Triangulációhoz a következőket kell ismerni
 - b bázistávolságot
 - f fókusztávolságot
 - d diszparitást (disparity)
- Diszparitás: pont elmozdulása a két képen

Standard sztereo geometriája

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Széles bázistávolságú sztereo

- Két statikus, kalibrált kamera
 - vagy két felvétel egy kamerával, változó szemszögből
- Nagyobb bázistávolság
 - wide baseline
- Előnye a standard sztereóhoz képest
 - nagyobb diszparitások
 - ightarrow precizebb mélységbecslés
- Hátránya
 - nagyobb geometriai torzítás
 - több takarás
 - \rightarrow nehezebb pontmegfeleltetés

A B F A B F

Széles bázistávolság előnye

- *P*, *Q* pontok egy optikai sugaron vannak
 - → az 1.kamerában nincs változás
 - egyszerűség kedvéért
- $d_{
 m WBL} \gg d_{
 m NBL}$
 - → precízebb mélységbecslés WBL-re
- d_{NBL} nagyon kicsi
 - kevés pixel
 - \rightarrow kerekítési pontatlanság
 - \rightarrow mélység "réteges" lesz

< 回 > < 三 > < 三 >

Rekonstrukció több felvétel vagy video alapján

- Három statikus, kalibrált kamera
 - standard kétkamerás sztereo kiterjesztése
 - bizonyos technikai előnyök
- Több felvétel kalibrált vagy nem kalibrált kamerával
 multiview stereo
- Rekonstrukció egy vagy több videófelvétel alapján
 - redundancia
 - → autókalibráció változó kameraparaméterek esetén
 - dinamikus 3D modellek
- Sok kalibrált felvétel vagy videófelvétel
 - közelítő rekonstrukció megfeleltetés nélkül
 - pontosabb rekonstrukció megfeleltetéssel

A D A D A D A

Áttekintés

★ ∃ ► 4

Megfeleltetés alapú sztereólátás

- Legtöbb képalapú rekonstrukciós módszer pontmegfeleltetést használ
 - nehéz feladat
- Kevesebb szabadságfok → gyorsabb, robusztusabb megfeleltetés
 - ightarrow geometriai kényszerek alkalmazása
- Epipoláris geometria epipoláris kényszer
 - egyenesek megfeleltetése
 - ightarrow 2D-s keresés helyett 1D-s keresés
- Két kamerakép megfeleltetése epipoláris kényszerrel
 - kalibrálatlan kamerák \longrightarrow fundamentális mátrix
 - kalibrált kamerák esszenciális mátrix
 - képek rektifikálása \longrightarrow képsorok megfeleltetése
 - ightarrow egyszerűbb 1D-s keresés

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Epipoláris geometria

Áttekintés

4 3 > 4 3

Kétkamerás megfeleltetés geometriája

- A C₁C₂ bázisegyenes a két fókuszpontot összekötő egyenes
- A bázisegyenes az e1, e2 epipólusokban metszi a két képsíkot
- Egy 3D-s pont és a két fókuszpont egy epipoláris síkot definiál

Image: A matrix

Kétkamerás megfeleltetés geometriája: video

- Az X pont az 1.képről visszavetített 3D-s egyenesen van
- A 2.képen az u₁ megfelelője egy epipoláris egyenesen van
 → epipoláris kényszer
- A 1.képen u₁e₁ a megfelelő epipoláris egyenes

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Epipoláris geometria

- Minden sík, amely a bázisegyenest tartalmazza, egy epipoláris sík
- A π epipoláris sík az I₁, I₂ epipoláris egyenesekben metszi a két képsíkot
 - → a két epipoláris egyenes megfelel egymásnak

A D b 4 A b

Epipoláris geometria: videó

- Amikor a 3D-s pont helye változik, az epipoláris sík "forog" a bázisegyenes körül
- Minden epipoláris egyenes metszi az epipólust

Áttekintés

4 3 > 4 3

Kalibrált kamerák: esszenciális mátrix 1/2

- Ismert kalibrációs mátrix K, ismeretlen R, t
 a két koordináta-rendszer közötti elforgatás és eltolás
- A C₁u₁, C₂u₂, C₁C₂ egyenesek egy síkban fekszenek

$$\mathbf{C}_2\mathbf{u}_2\cdot[\mathbf{C}_1\mathbf{C}_2\times\mathbf{C}_1\mathbf{u}_1]=0$$

→ ∃ →

Kalibrált kamerák: esszenciális mátrix 2/2

• Az 2. kamera koordináta-rendszerében, homogén koordinátákkal

 $\mathbf{u}_2 \cdot [\mathbf{t} \times R\mathbf{u}_1] = \mathbf{0}$

• az esszenciális mátrixszal kifejezve (Longuet-Higgins, 1981)

$$\mathbf{u}_2^\mathsf{T} \boldsymbol{E} \mathbf{u}_1 = \mathbf{0}, \tag{1}$$

ahol az esszenciális (lényegi) mátrix

$$E \doteq [\mathbf{t}]_{\times} R$$
 (2)

• [**a**]_× a keresztszorzat-mátrix:

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} \doteq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Esszenciális mátrix tulajdonságai

- Az u^T₂Eu₁ = 0 egyenlet a K-val normalizált (kalibrált) koordinátákra érvényes
 - normalizált kamera mátrix $P \longrightarrow K^{-1}P = [R| \mathbf{t}]$
 - \rightarrow normalizált képkoordináták $\mathbf{u} \longrightarrow K^{-1}\mathbf{u}$
- A homogén $E = [t]_{\times}R$ mátrixnak 5 szabadságfoka van
 - $3(R) + 3(t) 1(\lambda)$ (skálázási többértelműség)
- Az esszenciális mátrix rangja 2
 - két azonos nemnullás singuláris értéke van
- Az E mátrix elforgatásra és eltolásra bontható az SVD-vel
 - hasonlósági transzformació erejéig (skálázási többértelműség)
 - a t előjele is bizonytalan

(日)

Kalibrálatlan kamerák: fundamentális mátrix

• Longuet-Higgins képlete kalibrálatlan kamerák esetén

$$\mathbf{u}_2^\mathsf{T} \boldsymbol{F} \mathbf{u}_1 = \mathbf{0}, \tag{3}$$

$$F \doteq K_2^{-\mathsf{T}} E K_1^{-1} \tag{4}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- nem normalizált (kalibrálatlan) u₁, u₂
- A homogén F mátrixnak 7 szabadságfoka van
- Az F mátrix rangja 2
 - epipoláris egyenesek egy pontban metszik egymást
 - det $F = 0 \longrightarrow F$ szinguláris, nem invertálható
- epipoláris egyenesek: $I_1 = F^T u_2$, $I_2 = F u_1$
- epipólusok: $F\mathbf{e}_1 = \mathbf{0}, \, \mathbf{e}_2 F^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}}$

Áttekintés

A feladat megfogalmazása

- Adott *N* pontmegfeleltetés: $\{\mathbf{u}_{1i} \leftrightarrow \mathbf{u}_{2i}\}, i = 1, 2, \dots, N$
 - Az F mátrixnak 7 szabadságfoka van $\longrightarrow N \ge$ 7 kell
 - a gyakorlatban használt algoritmusoknál $N \ge 8$
 - a megfeleltetések zajosak —> csak becslésről lehet szó
 - ha hibás megfeleltetések is vannak, akkor $N \gg 7$ kell
- Tudjuk, hogy $\mathbf{u}_{2i}^{\mathsf{T}} F \mathbf{u}_{1i} = 0$
- Célünk egy olyan mátrix kiszámítása, amely
 - lehető legjobban közelíti az F-et, pl. a Frobenius norma szerint
 - szinguláris

(日)

Normalizált nyolcpontos algoritmus

- Output: F fundamentális mátrix

Algoritmus: Normalizált 8-pontos algoritmus

- Adatnormalizálás külön a két ponthalmazra
 - eltolás
 - skálázás
- Az F' mátrix meghatározása normalizált adatokra
 - (a) Lineáris megoldás az SVD-vel $\longrightarrow \widehat{F}$
 - (b) A det $\widehat{F} = 0$ szingularitási kényszer érvényesítése $\longrightarrow \widehat{F}'$
- Oenormalizálás
 - $\widehat{F}' \longrightarrow F$

Adatnormalizálás és denormalizálás

- Adatnormalizálás célja robusztusság növelése
 - kötelező lépés: különben numerikus stabilitás sincs
 - hibafüggvény komponensei hasonló nagyságrendűek legyenek
 - ightarrow hatásuk hibafüggvényre összemérhető legyen
- A két ponthalmazt külön normalizáljuk T₁ ill. T₂ transzformációval
 - eltolás: az origót a ponthalmaz súlypontjába helyezzük
 - skálázás: az origótól való átlagos távolságot √2-re normáljuk
- Denormalizálással visszatérünk az eredeti adatokhoz

$$\hat{F} = T_2^T \hat{F}' T_1 \tag{5}$$

(4) (5) (4) (5)

Lineáris egyenletrendszer az F mátrix elemeire

- Minden pontpárra $\mathbf{u}_2^{\mathsf{T}}F\mathbf{u}_1 = 0$, ahol $\mathbf{u}_k = [u_k, v_k, 1]^{\mathsf{T}}, k = 1, 2$
- \rightarrow Az *F* mátrix *f_{mn}* elemeire teljesül az alábbi lineáris egyenlet

 $u_2u_1f_{11} + u_2v_1f_{12} + u_2f_{13} + v_2u_1f_{21} + v_2v_1f_{22} + v_2f_{23} + u_1f_{31} + v_1f_{32} + f_{33} = 0$

 Bevezetjük a f = [f₁₁, f₁₂, ..., f₃₃]^T vektort és átírjuk az egyenletet skaláris szorzat alakban

$$[u_2u_1, u_2v_1, u_2, v_2u_1, v_2v_1, v_2, u_1, v_1, 1]\mathbf{f} = \mathbf{0}$$

Az összes N pontmegfeleltetésre, {u_{1i} ↔ u_{2i}}

$$A\mathbf{f} \doteq \begin{bmatrix} u_{21}u_{11} & u_{21}v_{11} & u_{21} & v_{21}u_{11} & v_{21}v_{11} & v_{21} & u_{11} & v_{11} & \mathbf{1} \\ \vdots & \vdots \\ u_{2N}u_{1N} & u_{2N}v_{1N} & u_{2N} & v_{2N}u_{1N} & v_{2N}v_{1N} & v_{2N} & u_{1N} & v_{1N} & \mathbf{1} \end{bmatrix} \mathbf{f} = \mathbf{0}$$

Az egyenletrendszer megoldása

- Hasonlóan járunk el, mint síkhomográfia becslésénél
- Kizárjuk a triviális $\mathbf{f} = \mathbf{0}$ megoldást
 - az f vektort csak skálázás erejéig tudjuk meghatározni
 - $\rightarrow~\text{rögz}$ ítsük a normát, legyen $\|\boldsymbol{f}\|=1$
- Ha a megfeleltetések ideálisak és rank $A \leq 8$
 - rank A < 8
 → többértelmű megoldás
 - rank A = 8 → egyértelmű megoldás
- Ha a megfeleltetések zajosak, lehetséges, hogy rank A = 9
 - csak közelítő megoldás van: minimalizáljuk a ||Af|| algebrai hibát
 - $\|\mathbf{f}\| = 1 \longrightarrow \text{minimalizáljuk } \|A\mathbf{f}\| / \|\mathbf{f}\| t$
 - → a megoldás az A^TA legkisebb sajátértékű sajátvektora
- A megoldás megkapható az A legkisebb szinguláris értékű szinguláris (egység)vektoraként
 - $A = UDV^{\mathsf{T}} \longrightarrow a V$ mátrix utolsó oszlopa

A szingularitási kényszer érvényesítése

- Ha nem érvényesítjuk a det *F* = 0 kényszert,
 - az epipoláris egyenesek nem fogják egy pontban metszeni egymást
 - ightarrow pontatlan epipoláris geometria hibás rekonstrukció
- Az egyenletrendszer megoldása nem garantálja, hogy det $\widehat{F}=0$
- A probléma lehetséges kikerülése: keressünk olyan F' mátrixot, amelyre
 - az $\|\widehat{F} \widehat{F}'\|$ Frobenius norma minimális
 - det $\widehat{F}' = 0$
- Ehhez felhasználjuk a kiszámított $A = UDV^{T}$ SVD-t
 - $D = \text{diag}(\delta_1, \delta_2, \delta_3)$ a szinguláris értékek diagonális mátrixa, $\delta_1 \ge \delta_2 \ge \delta_3$
 - az alábbi mátrix eleget tesz a fenti feltételeknek:

$$\widehat{\mathbf{F}}' = \mathbf{U} \operatorname{diag}(\delta_1, \delta_2, \mathbf{0}) \mathbf{V}^{\mathsf{T}}$$
(6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Az epipólusok meghatározása az F alapján

- Az epipólusok az F ill. F^{T} nullaterei: $F\mathbf{e}_1 = \mathbf{0}, \mathbf{e}_2 F^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}}$
- A fundamentális mátrixból az epipólusokat az SVD-vel lehet meghatározni
- A 8-pontos algoritmus garantálja, hogy az F-nek pontosan egy zérus szinguláris értéke lesz
- Kiszámítjuk az $F = UDV^{T}$ SVD-t, akkor
 - e1: V mátrixnak a zérus szinguláris értéknek megfelelő oszlopa
 - e2: U mátrixnak a zérus szinguláris értéknek megfelelő oszlopa
- Az algoritmusnak így legalább 8 megfeleltetett pontpár kell
 - vannak más algoritmusok, amelyeknek 6 pontpár is elég
 - ezek nem használják a fundamentális mátrixot

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A 8-pontos algoritmus alkalmazhatósága

- Működési elvekben hasonlít a homográfia lineáris becslésére
 - kisebb különbség: szingularitási kényszer
 - ightarrow hasonló tulajdonságok
 - egyszerű, gyors; egyértelmű megoldás
- Az $\epsilon = \|A\mathbf{f}\|$ hibafüggvény nehezen értelmezhető
 - az F elemeinek jelentősége és megkötöttsége különböző
 - \rightarrow a módszer nem optimális
- Az algoritmus korlátozottan robusztus
 - mérsékelten zajos megfeleltetések
 - nincs teljesen hibás megfeleltetés (outlier)
 - ightarrow egy ilyen hiba elronthatja az eredményt
 - összeomlási küszöb" (breakdown point) nagyon alacsony
- Gyakran önmagában is elfogadható eredményt ad
 - a precízebb és robusztusabb nemlineáris módszerek kiindulópontjának is alkalmazzák

Nemlineáris eljárások az F kiszámítására

- Algebrai hibafüggvény
 - epipólus kiszámítása és beépítése hibafüggvénybe
 - epipólus iterátív becslése és beépítése hibafüggvénybe
- Geometriai hibafüggvény
 - vetítési hiba
 - újravetítési hiba, pontos vagy közelítő
- A Gold Standard módszer
 - újravetítési hiba minimalizálása
 - → statisztikailag optimális becslés normál eloszlású zaj esetén
 - kiinduló becslés a normalizált 8-pontos algoritmussal
 - utána sokparaméters iteratív optimalizálás a Levenberg-Marquard algoritmussal
 - → ritka mátrixok, speciális LM-algoritmus gyors működéshez

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

RANSAC-alapú automatikus módszer

- Bemenet: két jellemzőpont-halmaz, megfeleltetések nélkül
 - az eddigi módszereknek hibátlan megfeleltetések szükségesek
 - nehéz számítógéppel garantálni emberi beavatkozás kellhet
- Teljesen automatikus: maga keresi a megfeleltetéseket
- Robusztus: nagyszámú hibás adat esetén is alkalmazható
- Működési elvek
 - ismételten véletlenszerűen kiválaszt, tesztel pontpárokat
 - lineáris módszerrel keresi a hibakorláton belüli megfeleltetéseket
 - sok teszt után az összegyűjtött inlierek-re alkalmazza az LM-algoritmust, geometriai hibafüggvénnyel
- Lehetséges hátrányok
 - a tesztek száma a hibás adatok feltételezett arányától függ
 - ightarrow az algoritmus lassú lehet
 - a hibakorlát kritikus paraméter, néha nehéz beálítani

Fundamentális mátrix becslése

Epipoláris geometria automatikus becslése: 1.példa

KLT jellemzőpontok 1

KLT jellemzőpontok 2

epipoláris egyenesek 1

epipoláris egyenesek 2

Epipoláris geometria automatikus becslése: 2.példa

Áttekintés

★ ∃ ► 4

Áttekintés

Standard sztereo geometriája

Mélységszámítás pontossága

- Ha d
 ightarrow 0, $Z
 ightarrow \infty$
 - távoli pontok diszparitása kicsi
- Diszparitáshiba és mélységhiba viszonya

$$\frac{|\Delta Z|}{Z} = \frac{|\Delta d|}{|d|}$$

- diszparitás növelésével csökken a relatív mélységhiba
- \rightarrow nő a mélység pontossága
- A bázistávolság hatása

$$d = \frac{bf}{Z}$$

- nagyobb b-re azonos mélység nagyobb diszparitást eredményez
- ightarrow nő a mélység pontossága
- \rightarrow több pixel \rightarrow nő a diszparitás pontossága

э

Áttekintés

4 3 > 4 3

Rektifikálás célja és elvei

- Rektifikálás bemenete egy nem standard sztereo képpár
- Rektifikálás célja a sztereo pontmegfeleltetés megkönnyítése
 - a megfelelő pontok azonos sorban lesznek a két képen
 - ightarrow standard sztereo, egydimenziós keresés
- Rektifikálás az epipoláris geometrián alapul
 - az epipoláris geometriának megfelelően transzformáljuk a képpárt
 - ightarrow egymásnak megfelelő epipoláris egyenesek azonos sorba kerülnek
 - → az epipólusok végtelenbe kerülnek
- Rektifikáláshoz a fundamentális mátrixot kell ismerni
 - \rightarrow a mátrix magába foglalja az epipoláris geometriát

Rektifikálási algoritmusok

• Csak az általános működési elveket ismertetjük

- rektifikálás összetett eljárás
- nem kötelező lépés, vannak hátrányai is
- Végtelen számú síkhomográfia van, amely egy adott képpárt rektifikál
 - → rektifikált képek anizotróp skálázása rektifikált képeket ad
 - ightarrow bonyolultabb affin képtorzításokra is igaz
- Ezért olyan síkhomográfiát keresnek, amely
 - eleget tesz a rektifikációs feltételeknek
 - az eredeti képekhez viszonyítva minimális torzításokkal vagy információ-vesztességgel jár
- Kalibrált kamerákra az eljárások lényegesen egyszerűsödnek

Rektifikálás geometriája

æ

Rektifikálás folyamata: video

A két epipólus a végtelenbe tart

Csetverikov, Hajder (ELTE Informatikai Kar)

Számítógépes látás

・ロト ・ 四ト ・ ヨト ・ ヨト

Rektifikálás: példa

előtte

utána

Csetverikov, Hajder (ELTE Informatikai Kar)

Számítógépes látás

æ

イロト イヨト イヨト イヨト

Rektifikálás előnyei és gyakrolati feltételei

- Olyan adatstruktúrát eredményez, amely (elvileg) standard sztereóra redukálja a megfeleltetést
 - ightarrow alkalmazhatunk számos, standard sztereóra kidolgozott algoritmust
- Jól szemlélteti az epipoláris geometria lényegét
- A gyakorlatban a geometriát nagyon pontosan kell felépíteni
 - különben a rektifikált képeken a sorok "elcsúsznak"
 - ightarrow nem találjuk meg a megfelelő pontokat

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rektifikálás hátrányai

- Széles bázistávolságú sztereo nagyobb képtorzítással jár
 - rektifikálás gyakran még jobban torzítja a képeket
 - ightarrow standard sztereóból pixel-alapú eljárásokat vehetünk át
 - ightarrow ablak-alapú (pl. korrelációs) eljárásokat nem
- Rektifikált kép mérete és alakja más, mint az eredetié
 - → bonyolítja a megfeleltetést
- ightarrow Nem mindenki ért egyet rektifikálás szükségességével
 - egyes vélemények szerint a megfeleltetést az eredeti képeken kell elvégezni
 - ightarrow az epipoláris kényszer figyelembe vételével
 - a pontok közvetlen környezetét is meg kell vizsgálni

Áttekintés

< ∃ ►

Sztereo rekonstrukció típusai

Teljesen kalibrált rekonstrukció

- ismert külső és belső kameraparaméterek
- rekonstrukció triangulációval
- ismert bázistávolság ismert skála
- Metrikus (euklideszi) rekonstrukció
 - ismert belső kameraparaméterek, ismert $n \ge 8$ pontmegfeleltetés
 - külső kameraparaméterek meghatározása esszenciális mátrixból
 - rekonstrukció hasonlósági transzformáció erejéig
 - ightarrow skála erejéig

Projektív rekonstrukció

- ismeretlen kameraparaméterek, ismert $n \ge 8$ pontmegfeleltetés
- projekciós mátrixok meghatározása fundamentális mátrixból
- rekonstrukció projektív transzformáció erejéig
- Projektív rekonstrukciótól metrikus rekonstrukcióig
 - projektív rekonstrukció "feljavítása" (upgrade)

Áttekintés

Trianguláció

Feladat

- ismerjük a két kamera külső és belső paramétereit
- ismerjük a 3D-s \boldsymbol{X} pont $\boldsymbol{u}_1, \boldsymbol{u}_2$ vetületeit a kép képen
- meg kell határozni az X térbeli pozicióját
- A két kalibrációs mátrix ismert, ezért kalibrált mennyiségekkel dolgozunk
 - kalibrált kamera mátrix $K^{-1}P = [R| \mathbf{t}]$
 - kalibrált koordináták $\mathbf{p} = K^{-1}\mathbf{u}$
- Az egyszerűség kedvéért feltételezzük, hogy a világ koordináta-rendszere egybeesik az 1.kameráéval
 - nem homogén koordinátákat használunk
 - $\rightarrow \mathbf{p}_2 = \mathbf{R}(\mathbf{p}_1 \mathbf{t}), \mathbf{p}_1 = \mathbf{t} + \mathbf{R}^T \mathbf{p}_2$
- Visszavetítjük a két képpontot a térbe
 - kalibrációs pontatlanságok miatt a két sugár nem metszi egymást
 - \rightarrow hogyan határozzuk meg az **X** pontot?

Lineáris triangulációs algoritmus: geometria

- Az X₁X₂ szakasz merőleges r₁-re és r₂-re
- A keresett X pont az X₁X₂ szakasz közepén fekszik
- A w vektor párhuzamos az X1X2-vel

Lineáris triangulációs algoritmus: jelölések

α**p**₁ egy pont az **r**₁ sugaron (α ∈ ℜ) **t** + β**R**^T**p**₂ egy pont az **r**₂ sugaron (β ∈ ℜ)
→ az 1.kamera koordináta-rendszerében

• Legyen
$$\mathbf{X}_1 = \alpha_0 \mathbf{p}_1$$
, $\mathbf{X}_2 = \mathbf{t} + \mathbf{R}^{\mathsf{T}} (\beta_0 \mathbf{p}_2 - \mathbf{t})$

A (10) A (10)

Trianguláció és metrikus rekonstrukció

Lineáris triangulációs algoritmus: feladat és megoldás

Feladat

- az X₁X₂ szakasz (középpontjának) meghatározása
- $\rightarrow \alpha_0, \beta_0$ kiszámítása
- Vegyük észre, hogy
 - a $\mathbf{w} = \mathbf{p}_1 \times R^T(\mathbf{p}_2 \mathbf{t})$ vektor merőleges \mathbf{r}_1 -re és \mathbf{r}_2 -re
 - az αp₁ + γw vonal párhuzamos w-vel és átmegy αp₁-n (γ ∈ ℜ)
- $\rightarrow \alpha_0, \beta_0$ a következő lineáris egyenletrendszer megoldása (γ_0 is kijön):

$$\alpha \mathbf{p}_1 + \mathbf{t} + \beta R^{\mathsf{T}}(\mathbf{p}_2 - \mathbf{t}) + \gamma [\mathbf{p}_1 \times R^{\mathsf{T}}(\mathbf{p}_2 - \mathbf{t})] = 0$$
(7)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A megoldás visszahelyettesítéssel, pl. : α₀p₁
- Akkor van egyértelmű megoldás, ha r₁ és r₂ nem párhuzamos

Lineáris triangulációs algoritmus: második megoldás

• Adott két vetített pontja az ismeretlen X térbeli pozíciónak:

$$\lambda_1 \mathbf{u}_1 = \mathbf{P}_1 \mathbf{X}$$
$$\lambda_2 \mathbf{u}_2 = \mathbf{P}_2 \mathbf{X}$$

 λ-k eltüntethetőek. Mindkét egyenletből 2-2 egyenletet kaphatunk a koordinátákra:

$$u\mathbf{p}_3^T\mathbf{X} = \mathbf{p}_1^T\mathbf{X}$$
$$v\mathbf{p}_3^T\mathbf{X} = \mathbf{p}_2^T\mathbf{X}$$

- ahol \mathbf{p}_i^T a **P** projekciós mátrix *i*-dik sora.
- Mindkét vetítés 2-2 egyenletet ad. Ismeretlen: X vektor.
- Homogén lineáris egyenletrendszer megoldása X.
- Fontos: megoldás homogén koordinátákkal jön!

Pontosítás újravetítési hiba minimizálásával

- Ha *n* pontpárunk van, a lineáris algoritmussal X_i pontokat kapunk,
 i = 1, 2, ..., *n*
- Ezt a megoldást pontosítani lehet, és érdemes is
 - az újravetítési hiba minimalizálása optimális megoldást nyújt
 - síkhomográfiához hasonlóan, normál eloszlású zaj esetén
- Az újravetítési hiba minimalizálásához meg kell variálnunk
 - a kalibrált **p**_{1i} pontokat az 1.képen
 - a kalibrált projekciós mátrix összetevőit, R-t és t-t
 - → a **belső** kameraparamétereket **nem** variáljuk
- A nemlineáris minimalizálás kiindulópontja
 - az X_i pontok vetületei az első képen
 - a kalibráláskor kapott, eredeti R és t

Kötegbeállítás

 Olyan R, t vetítést és tökéletesen megfelelő p_{1i}, p_{2i} pontokat keresünk, amelyek minimalizálják az újravetítési hibát

$$\sum_{i} \left(\|\mathbf{p}_{1i} - \hat{\mathbf{p}}_{1i}\|^2 + \|\mathbf{p}_{2i} - \hat{\mathbf{p}}_{2i}\|^2 \right)$$

úgy, hogy $\hat{\mathbf{p}}_{2i} = \widehat{R} \left(\hat{\mathbf{p}}_{1i} - \hat{\mathbf{t}} \right) \ \forall i$

- A sokparaméteres minimalizálásra a "ritka" Levenberg-Marquardt algoritmust használják
 - sok paraméter, de kevés összefüggés \longrightarrow ritka mátrix
 - sparse matrix, sparse LM
- A sugarak "kötegét" egyszerre kell pontosítani, beállítani
 - → az eljárást kötegbeállításnak nevezik
 - bundle adjustment

Metrikus rekonstrukció esszenciális mátrix alapján

- Ismert belső kameraparaméterek, ismert n ≥ 8 pontmegfeleltetés
 az E mátrix alapján meg kell határozni külső kameraparamétereket
- Ismeretlen bázistávolság \longrightarrow ismeretlen skála
 - az ismeretlen bázistávolságot 1-re normalizálhatjuk
 - → euklideszi rekonstrukció a skála erejéig
- Feltételezhetjük, hogy világkoordináta-rendszer egybeesik az 1.kameráéval
 - \rightarrow homogén koordinátákkal $P_1 = [I|\mathbf{0}]$, ahol I az egységmátrix
- A 2. kamera pozicióját az SVD-vel számítjuk ki
 - négy lehetséges megoldás lesz
 - ezekből csak az egyiket kell felhasználni

A 2. kameramátrix meghatározása SVD-vel

- Legyen az *E* SVD-je $E = UDV^{T}$, ahol $D = \text{diag}(\delta, \delta, 0)$ \rightarrow mint tudjuk, *E*-nek két azonos szinguláris értéke van
- Be lehet bizonyítani, hogy 4 lehetséges megoldás van

 $\begin{aligned} R_1 &= UWV^{\mathsf{T}} \\ R_2 &= UW^{\mathsf{T}}V^{\mathsf{T}} \\ [t_1]_{\times} &= \delta UZU^{\mathsf{T}} \\ [t_2]_{\times} &= -\delta UZU^{\mathsf{T}} \end{aligned}$

ahol

$$W \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad Z \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A 2-2 megoldás kombinálásából jön a 4 megoldás.

• Ha R₁ vagy R₂ determinánsa negatív, invertálni kell a mátrixot!

A négy lehetséges megoldás értelmezése

- Bal és jobb oszlop: a két kamera felcserélődik
- Felső és alsó sor: a *B* kamera megfordul a bázisegyenes körül
- Csak az 1.esetben a rekonstruált pont mindkét kamera előtt van

Áttekintés

Projektív rekonstrukció fundamentális mátrix alapján

- Ismertlen kameraparaméterek, ismert $n \ge 8$ pontmegfeleltetés
 - az F mátrix alapján meg kell határozni a két kameramátrixot
- Rekonstrukció tetszőleges projektív transzformáció erejéig lehetséges
 - ha *H* egy projektív transzfomáció, akkor $P_k \mathbf{X} = (P_k H)(H^{-1}\mathbf{X}), k = 1, 2$
 - \rightarrow ha $\mathbf{u}_1 \leftrightarrow \mathbf{u}_2$ X-re és P_k -ra, akkor $\mathbf{u}_1 \leftrightarrow \mathbf{u}_2$ H^{-1} X-re és P_k H-ra
 - \rightarrow *F*-ből *P_k*-t csak *H* erejéig tudjuk meghatározni
- Megfelelő H-val P₁ mindig kanonikus alakba hozható
 - homogén koordinátákkal P₁ = [I|0]

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kalibrált és nem kalibrált eset összefoglalója

	kalibrált eset	nem kalibrált eset
epipoláris kényszer	$\mathbf{u}_{2}^{T}K_{2}^{-T}EK_{1}^{-1}\mathbf{u}_{1}=0$	$\mathbf{u}_2^T F \mathbf{u}_1 = 0$
fundamentális mátrix	${m E} = [{f t}]_{ imes} {m R}$	$F = K_2^{-T} E K_1^{-1}$
epipólusok	$EK_{1}^{-1}\mathbf{e}_{1}=0$	$F\mathbf{e}_1=0$
	$\mathbf{e}_2^T K_2^{-T} E^T = 0^T$	$\mathbf{e}_2 \mathbf{F}^T = 0$
epipoláris egyenesek	$I_1 = K_1^{-T} E^T K_2^{-1} u_2$	$I_1 = F^T u_2$
	$I_2 = K_2^{-T} E K_1^{-1} u_1$	$I_2 = F u_1$
rekonstrukció	metrikus: X _m	projektív: $\mathbf{X}_{p} = H\mathbf{X}_{m}$

・ロト ・ 四ト ・ ヨト ・ ヨト

Projektív rekonstrukció "feljavítása"

- A színtér metrikus reconstrukciója benne van a lehetséges projektív rekonstrukciók halmazában
 - ki lehet-e onnan nyerni?
 - milyen plusz információ kell hozzá?
- Közvetlen (*direct*) módszer
 - ismerni kell legalább 5 pont euklideszi pozícióját
 - \rightarrow ki tudjuk számítani azt a *H*-t, amire $\mathbf{X}_m = H^{-1}\mathbf{X}_p$
- Rétegelt (stratified) módszer
 - egyenesek párhuzamossága, merőlegessége
 - projektív \longrightarrow affin \longrightarrow metrikus
 - → affin rekonstrukcióban H nem projektív, hanem affin transzformáció
 - ightarrow rekonstrukció affin transzformáció erejéig

A feljavításhoz felhasználható információ: video

- Egyenesek párhuzamossága
- Egyenesek merőlegessége

< 回 > < 三 > < 三 >

Áttekintés

4 3 > 4 3

Síkmozgás

- Úton haladó autó síkmozgást végez.
- Az úton halad és elfordul a jármű.
- Két képkockája a felvételnek sztereó problémát eredményez.
- A (világ-)koordinátarendszert a járműhöz rögzítjük, a Z tengely párhuzamos legyen az úttal.
- A kanyarodás Y tengely körüli forgatással (β szöggel) írható le.
- Az eltolás kétdimenziós. Csak az irányát tudjuk rekonstruálni, ezt Y tengely körüli α szöggel való elfordulásként reprezentálhatjuk.

$$\mathbf{t} = \begin{bmatrix} t_x \\ 0 \\ t_z \end{bmatrix} = \rho \begin{bmatrix} \cos \alpha \\ 0 \\ \sin \alpha \end{bmatrix}, \qquad \mathbf{R} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Planar motion: essential matrix

• Az eltolás mátrixos alakja:

$$\mathbf{t} = \rho \begin{bmatrix} \cos \alpha \\ \mathbf{0} \\ \sin \alpha \end{bmatrix} \rightarrow [\mathbf{t}]_X = \rho \begin{bmatrix} \mathbf{0} & -\sin \alpha & \mathbf{0} \\ \sin \alpha & \mathbf{0} & -\cos \alpha \\ \mathbf{0} & \cos \alpha & \mathbf{0} \end{bmatrix}$$

• Az esszenciális mátrix:

$$\mathbf{E} = [\mathbf{t}]_X \mathbf{R} \sim \begin{bmatrix} 0 & -\sin\alpha & 0\\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & 0 & \sin\alpha\sin\beta - \cos\alpha\cos\beta\\ 0 & \cos\alpha & 0 \end{bmatrix}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Síkmozgás: esszenciális és fundamentális mátrixok

• Trigonometrikus átalakítások után:

$$\mathbf{E} \sim \left[egin{array}{ccc} \mathbf{0} & -\sinlpha & \mathbf{0} \ \sin(lpha+eta) & \mathbf{0} & -\cos(lpha+eta) \ \mathbf{0} & \coslpha & \mathbf{0} \end{array}
ight]$$

A kamera (belső) paramétermátrixa is legyen speciális.
 Döféspontba tegyük az origót, és a pixelek négyzetesek legyenek, azaz feltételezzük az ún. félig kalibrált kamerát! Ekkor:
 K = diag(f, f, 1),

$$\mathbf{F} = \mathbf{K}^{-T} \mathbf{E} \mathbf{K}^{-1} \sim \begin{bmatrix} 0 & -\frac{\sin \alpha}{f^2} & 0\\ \frac{\sin(\alpha+\beta)}{f^2} & 0 & -\frac{\cos(\alpha+\beta)}{f}\\ 0 & \frac{\cos \alpha}{f} & 0 \end{bmatrix}.$$

Síkmozgás: becslés

- A fundamentális/esszenciális mátroxikban mindössze négy elem nemnulla.
 - Esszenciális mátrix két pontmegfeletetésből becsülhető.
 - Fundamentális mátrix (félig kalibrált kamera esetén): három pontpárból.
- Robusztifikáció (pl. RANSAC algoritmussal) nagyon fontos!
- Pontpáronként az egyenlet: **p**₁ = [*u*₁, *v*₁], **p**₂ = [*u*₂, *v*₂], ahol α és β az ismeretlenek(kalibrált eset):

$$\left\langle [v_1, -u_2v_1, -v_2, v_2u_1]^T, [\cos\alpha, \sin\alpha, \cos(\alpha+\beta), \sin(\alpha+\beta)]^T \right\rangle = 0$$

• Sok pontmegfeletetés esetén az egyenletrendszer így akakul:

$$\mathbf{A}_1\mathbf{v}_1 + \mathbf{A}_2\mathbf{v}_2 = \mathbf{0}$$

• ahol $\mathbf{v}_1 = [\cos \alpha, \sin \alpha]^T$ és $\mathbf{v}_2 = [\cos(\alpha + \beta), \sin(\alpha + \beta)]^T$

Síkmozgás: becslés

• Átalakítva:
$$\mathbf{v}_1^T \mathbf{v}_1 = \mathbf{v}_2^T \mathbf{v}_2 = 1$$
.

További átalakítások:

$$\mathbf{A}_1 \mathbf{v}_1 + \mathbf{A}_2 \mathbf{v}_2 = \mathbf{0} \tag{8}$$

$$\mathbf{A}_1 \mathbf{v}_1 = -\mathbf{A}_2 \mathbf{v}_2 \tag{9}$$

$$\mathbf{v}_1 = -\mathbf{A}_1^{\dagger}\mathbf{A}_2\mathbf{v}_2 \tag{10}$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

$$\mathbf{v}_1^T \mathbf{v}_1 = \mathbf{v}_2^T \left(\mathbf{A}_1^\dagger \mathbf{A}_2 \right)^T \left(\mathbf{A}_1^\dagger \mathbf{A}_2 \right) \mathbf{v}_2 = 1$$
(11)
$$\mathbf{v}_2^T \mathbf{B} \mathbf{v}_2 = 1$$
(12)

• amennyiben
$$\mathbf{B} = \left(\mathbf{A}_1^{\dagger}\mathbf{A}_2\right)^T \left(\mathbf{A}_1^{\dagger}\mathbf{A}_2\right)$$
.

 Ezért v₂ megkapható egy speciális ellipszis és az egységkör metszéspontjaiként: v₂Bv₂ = v₂^Tv₂ = 1.
Síkmozgás: becslés

- A megoldás SVD alkalmazásán keresztül kapható meg::
 B = U^TSU.
- Legyen továbbá $\mathbf{r} = [r_x \quad r_y]^T = \mathbf{U}\mathbf{v}_2$. Ekkor
 - $\mathbf{v}_2^T \mathbf{B} \mathbf{v}_2 = \mathbf{1} \tag{13}$

$$\mathbf{v}_2^T \mathbf{U}^T \mathbf{S} \mathbf{U} \mathbf{v}_2 = \mathbf{1}$$
(14)

$$\mathbf{r}_2^T \mathbf{S} \mathbf{r}_2 = \mathbf{1} \tag{15}$$

$$\mathbf{r}_2^T \begin{bmatrix} s_1 & 0\\ 0 & s_2 \end{bmatrix} \mathbf{r}_2 = \mathbf{1}$$
 (16)

• Ezért: $s_1 r_x^2 + s_2 r_y^2 = 1$

• és
$$r_x^2 + r_y^2 = 1$$

→ Lineáris rendszert kaptunk r_x^2 -re és r_y^2 -re. (Négy esetből kell a megoldást kiválasztani, a hagyományos sztereó megoldáshoz teljesen hasonlatosan.)

•
$$\mathbf{v}_2 = \mathbf{U}^T \mathbf{r}$$
 és $\mathbf{v}_1 = -\mathbf{A}_1^{\dagger} \mathbf{A}_2 \mathbf{v}_2$ adják a végső megoldást.

Összefoglaló

Áttekintés

Kétkamerás 3D-s rekonstrukció

- Képalapú 3D-s rekonstrukció elvei
- Kétkamerás sztereólátás geometriája
 - Epipoláris geometria
 - Esszenciális mátrix és fundamentális mátrix
 - Fundamentális mátrix becslése
- Standard sztereo és rektifikálás
 - Standard sztereo mélységszámítása
 - Sztereóképek rektifikálása
- 3D-s rekonstrukció sztereóképekból
 - Trianguláció és metrikus rekonstrukció
 - Projektív rekonstrukció
 - Síkmozgás
- 5 Összefoglaló

< ∃ >

Felhasznált források

- R.Hartley, A.Zisserman: "Multiple View Geometry in Computer Vision", Cambridge University Press
- M.Sonka, V.Hlavac, R.Boyle: "Image Processing, Analysis and Machine Vision", Thomson
- Y. Ma, S. Soatto, J. Kosecka, S. Shankar Sastry: "An Invitation to 3-D Vision", Springer
- D.A. Forsyth, J. Ponce: "Computer Vision: a modern approach", Prentice Hall
- E. Trucco, A. Verri: "Introductory Techniques for 3-D Computer Vision", Prentice Hall
- Hajder Levente: "Háromdimenziós objektum rekonstrukció videófelvételekből"
 - vision.sztaki.hu/~hajder/rekonstrukcio/
- Kató Zoltán, Czúni László: "Számítógépes látás"
 - tananyagfejlesztes.mik.uni-pannon.hu/