SIFT

Scale Invariant Feature Transform

Introduction

- SIFT: Scale-invariant feature transform.
- SIFT method was developed in the early 2000s.
- Its accuracy and robustness were significantly higher than previous template matching methods.
- Its extensions/modifications (PCA-SIFT, ASIFT, SURF, ORB, BRIEF, etc.) are very popular and applied even in the age of deep learning.
 - even if nowadays deep-learning is the most popular;
 - e.g. SuperPoints/SuperGlue.

Steps of SIFT feature matching

As it is usual, two main steps form the method

- 1. Feature Detection
 - a. -> descriptor
- 2. Feature Matching

Feature detection

- 1. Scale space
 - due to scale invariance
- 2. Difference of Gaussian (DoG) operator
 - for measuring
- 3. Orientation estimation
 - histogram from gradient orientation

Scale space

Image are rescaled to several variants

• Here, 100%, 75%, 50%, 25% are visualized

Gaussian Filtering

Gaussian filtering with increasing sigma

Difference of Gaussians (DoG)

Here are some examples for the differences:

DoGs at different scales

Peak selection

Orientation estimation

The patch around keypoint location selected

- gradient orientation computed
 - using Prewitt or Sobel operator
- Histogram created from gradient direction
 - 36 bins applied
 - \circ 0°-9°, 10°-19°,..., 350°-359°
- Peak gives orientation of the patch
 - 80% rule: if second peak is close, keypoint deleted.

Keypoint descriptor

- 16x16 pixel patches applied
 - divided into 4x4 patterns
- Histogram for orientation of sub-patterns
 - 8 bins / pattern
- Feature described by 128D vector
 - Containing every histogram value
 - o 4x4x8=128

Keypoint matching

- 128D vectors simply compared between images
 - difference between vectors (absolute value)
- 80% rule again
 - score differences for second best target higher than 80% score of best match
 - features discarded

Trivial modifications: Affine SIFT

- Images transformed by several affine transformations (ATs)
- ATs simulate viewpoint difference
 - Then SIFT applied

Example

- Affine transformation between images
 - a. ORB features
 - initial scales and angles obtained
 - b. brute force template matching
 - varying scale and angles
 - c. Lucas-Kanade method for final refinement

Thank you for your attention