Research Seminar Eötvös Loránd University, Budapest, Hungary, 13 May 2025

Exploring Opportunities with 3D Point Clouds

Weisi Lin

Email: <u>wslin@ntu.edu.sg</u> College of Computing and Data Science Nanyang Technological University, Singapore

Two separate worlds for long

- Computer vision: 2D visual data (from physical world) → 3D understanding
- Computer graphics: 3D models (from virtual world)→ 2D rendering/visualization

3D point clouds (PCs): a bridge between physical and virtual worlds To facilitate

- mixed reality
- multimedia interaction
- digital transformation
- smart cities

3D Digital Transformation • Digital Twin for everything

Point Cloud (PC) Acquisition

1) RGBD sensors: Kinect, Laser scanner, Lidar, ...

2) Structure from Motion (SfM) Photogrammetry

Lin & Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. Signal and Info Processing, 11(1), e28, 2022.

• 3D PCs captured

Laser Scanning Equipment by LiDAR Handheld Device

Different scales of 3D data acquisition

• Scanned Raw PCs

3D reconstruction from a single image

- K. Chan, et al, "R-Cyclic Diffuser: Reductive and Cyclic Latent Diffusion for 3D Clothed Human Digitalization", CVPR 2024.
- K. Chan, et al, "Fine Structure-Aware Sampling: A New Sampling Training Scheme for Pixel-Aligned Implicit Models in Single-View Human Reconstruction", AAAI 2024.
- K. Chan, *et al*, "S-PIFu: Integrating Parametric Human Models with PIFu for Single-view Clothed Human Reconstruction", NeurIPS 2022.
- K. Chan, *et al*, "IntegratedPIFu: Integrated Pixel Aligned Implicit Function for Single-view Human Reconstruction", ECCV, 2022.

AI (deep learning) to fill missing Point Cloud Data

Coloring of 3D Point Clouds

- 1. Range image generation from a point cloud
- 2. Color attribute generation using conditional GAN (cGAN)
- 3. Color attribute projection and merging

Hou, et al, "Range Image Based Point Cloud Colorization Using Conditional Generative Model", IEEE ICIP, 2019

3D PCs:

Point clouds data for Bremen city Large (city) scale

Lucy Model

Max Planck Model

Single object (standalone or to form bigger PCs—like BIM)

- A point cloud: a set of points used to represent a 3D object/scene
 - Geometry info: coordinates (x, y, z)
 - Possible attribute info: color, normal, SIFT, etc.
- Examples of application scenarios

Also: robots, gaming/entertainment, social media, industrial metaverse, BIM, urban surveillance/planning, digital art, cultural heritage preservation, future training/education, crime investigation, discovery in medical/biological/material sciences

- Challenges & opportunities
 - large-scale, high-resolution point clouds: millions of "nonstructured" points
 - dynamic point clouds at a high frame rate: tens of GB
 - urgent calls for technical innovation in storage, transmission, processing, etc.

Three types of targeted ultimate users for 3D PCs:

Type III: HVS + MI

The rest of this talk: to present related recent research attempts... to address the major challenges

- PC representation
 Compression
 Mesh reconstruction
- PC saliency determination
- Image-based localization, for practical applications
 - PC simplification
 - PC quality assessment
- Moving forward

The rest of this talk: to present related recent research attempts... to address the major challenges

- PC representation
 Compression
 Mesh reconstruction
- PC saliency determination
- Image-based localization, for practical applications
 **PC simplification
 - PC simplification
 - PC quality assessment
- Moving forward

MPEG PC compression (PCC) standardization

• 3 PC categories

○ Category 1: static objects & scenes ¬

• Category 2: dynamic objects Complete 3D data

• Category 3: dynamically-acquired LiDAR sequences -- "one-sided" 3D data

- 2 existing coding schemes
 - TMC13 (geometry-based PCC; G-PCC)

Proposed for Categories 1 and 3 (but may be used for all PCs)

✤geometry info:

Duse an **octree** structure & 1 bit to tell the occupancy of each node

□decode first before decoding attribute information

2 attribute/color coding options: Region Adaptive Hierarchical Transform (RAHT); Level of Details (LoD) based

o TMC2 (video-based PCC; V-PCC)

Proposed for Category 2 (but may be used for all PCs)

- **\Rightarrow Project** 3D points with different viewpoints \rightarrow compress by **existing video codec**
- ✤ 3 major modules: patch generation; patch projection & packing; image padding

good for uniformly-distributed PCs; not suitable for large-scale PC compression

Lin & Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. Signal and Info Processing, 11(1), e28, 2022.

Dynamic objects :

(Category-2)

- not to compress 3D PCs directly
- project 3D data onto 2D frames
 - ✓ **cubic** (or cylinder) projection
- using 2D Motion Compensation (MC) & Motion Estimation (ME)
- making full use of existing 2D image/video coding infrastructure

Patch projection-based V-PCC

To make generated frames more suitable for existing video coding infrastructure

projection-based V-PCC: high computational complexity

- Patches: contain a large number of empty pixels → generated videos are with high dimensions
- A PC: decomposed into **3 videos** (joining all projections)

Projection Orientation

Provision of far & near layers for attribute & geometry → generated videos:
 higher frame

depth values as D_h
The lowest points with depth values as D_l

The points with depth

values $D_h = D_l$

In-between Points

discarded

rate-distortion optimization (RDO):

INGAPORE

$$m^* = \underset{m_i \in \mathbf{M}}{\operatorname{arg\,min}} \{J(m_i) = D(m_i) + \lambda R(m_i)\},\$$

 $M = \{M_{\mathit{Inter}}, M_{\mathit{Intra}}\}$, as all prediction modes, including

$$\mathbf{M}_{Intra} = \{ Intra_{2N \times 2N}, Intra_{N \times N} \}. \text{ and } \mathbf{M}_{Inter} = \{ Inter_{skip/merge}, Inter_{2N \times 2N}, \\ \mathbf{M}_{asym}, \mathbf{M}_{sym} \}. \\ \text{asymmetric modes} \text{ symmetric modes}$$

the modes can be also divided, according to partition size:

$$\begin{array}{l} \mathbf{M}_{2N\times 2N} = \{ Inter_{skip/merge}, \\ Inter_{2N\times 2N}, Intra_{2N\times 2N} \}. \\ \text{the modes with the partition size } 2N\times 2N \end{array} \text{ and } \mathbf{M}_{non-2N\times 2N} = \{ Intra_{N\times N}, \mathbf{M}_{asym}, \mathbf{M}_{sym} \}. \\ \text{the modes with the partition size } 2N\times 2N \end{array}$$

Occupancy-map guided fast coding mode decision

Both theoretical analysis & experimental demonstration: 3 simple & effective occupancy map based rules (also using far/near info)

Can we avoid overhead caused by many projections of a PC?

Zhao, et al, "Fine-Grained Patch Segmentation and Rasterization for 3D Point Cloud Attribute Compression", IEEE Trans. on Circuits and Systems for Video Technology, 31(12): 4590-4602, 2021.

More work in PC coding:

Xiong, et al, "Efficient Geometry Surface Coding in V-PCC", *IEEE Transactions* on *Multimedia*, 2023.

Xiong, et al, "Occupancy Map Guided Fast Video based Dynamic Point Cloud Coding", IEEE Transactions on Circuits and Systems for Video Technology, 32(2): 813-825, 2022.

- To reconstruct 3D meshes from a 3D point cloud Limitations of 3D Point Clouds:
 - no info for *topological structure*
 - not support *shape analysis* algorithms
 - not support high-precision *rendering* tasks

3 key requirements for mesh reconstruction

Voxel Structure

Resampling – preparing data for mesh reconstruction *in parallel (for efficiency)*

Based on *voxel structure*, points are *resampled* by FPS (Farthest Point Sampling).

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE Lv, et al, "Voxel Structure-based Mesh Reconstruction from a 3D Point Cloud", *IEEE Transactions on Multimedia*, 24 (2021): 1815-1829.

More details of related research:

Lv, et al, "Intrinsic and Isotropic Resampling for 3D Point Clouds", IEEE Trans on Pattern Analysis and Machine Intelligence, 45(3): 3274-3291, 2023.

Lv, et al, "KSS-ICP: Point Cloud Registration based on Kendall Shape Space", IEEE Transactions on Image Processing, 32: 1681-1693, 2023.

Lv, et al, "Approximate Intrinsic Voxel Structure for Point Cloud Simplification", IEEE Transactions on Image Processing, 30(9): 7241 – 7255, 2021

The rest of this talk: to present related recent research attempts... to address the major challenges

- PC representation
 Compression
 Mesh reconstruction
- PC saliency determination
- - PC quality assessment
- Moving forward

local distinctness & global rarity: both important; like in cases of 2D images

Main contributions:

- Consider local geometric features of each point for cluster-level global rarity refinement
- Propose an adaptive optimization framework.

X. Ding, et al., "Point Cloud Saliency Detection by Local and Global Feature Fusion", IEEE Transactions on Image Processing, 2019

Local Distinctness

Characterize local geometric features

- Zernike coefficients (performance not stable across different models)
- **SHOT descriptor** (10x in size compared with FPFH; slow processing speed)
- Fast Point Feature Histograms (FPFH) descriptor

Measure the difference/dissimilarity between <u>two points</u> (p_i, p_i)

$$\chi^2(p_i, p_j) = \sum_{n=1}^N \frac{\left(FPFH_n(p_i) - FPFH_n(p_j)\right)^2}{FPFH_n(p_i) + FPFH_n(p_j)}$$

local distinctness (within <u>a neighborhood R</u>)

$$D(p_i) = 1 - \exp(-\frac{1}{R}\sum_{j=1}^R \frac{\chi^2(p_i, p_j)}{1 + ||p_i - p_j||})$$

Global Rarity

PC segmentation

• Voxel cloud connectivity segmentation [24]

Cluster-level global rarity calculation (similar to local distinctness calculation):

$$G(c_i) = 1 - \exp(-\frac{1}{N}\sum_{j=1}^N \frac{\chi^2(c_i, c_j)}{1 + ||c_i - c_j||})$$

Random Walk Ranking: to distribute cluster-level global rarity G to point-level

Initialization

1. Seed points

Salient: points nearest to a salient-cluster (i.e., G of a cluster > th1) center,

Non-salient: points nearest to non-salient-cluster (i.e., G of a cluster < th2) center

2. Unseeded points:

all points for clusters with th2 < G < th1;

All other points in Case 1 above

- a random walker:
- starting at each of the unseeded points
- calculate the probability of first reaching one of the seed points

 $th_1 = mean(G) + \frac{1}{2}\Delta$ $th_2 = mean(G)$ $\Delta = max(G) - mean(G)$

Optimization Framework

Integrate local & global saliency cues

- Linear combination (not ideal)
- Adaptive integration to minimize

k=2, Z₂: point-level global rarity refinement

The framework enables

- Higher local distinctness & higher global rarity to obtain higher S_i
- Lower local distinctness & lower global rarity to obtain lower S_i

The rest of this talk: to present related recent research attempts... to address the major challenges

- PC representation
 Compression
 Mesh reconstruction
- PC saliency determination
- Image-based localization, for practical applications
 PC simplification
 - PC quality assessment
- Moving forward

Structure-from-Motion (SfM) Point Clouds (PCs)

Exemplary Views

Information a 3D Point

Image Collections

What is Image-based Localization?

• Given a 3D SfM PC, compute the 6-DOF camera pose for a query image

Query Image

3D Structure-from-Motion Point Cloud

6-DOF Camera Pose

Further Analysis

IANYANG

NIVERSITY INGAPORE

- A Key Factor for Image-based Localization
 - A random view from underlying scene should be able to establish sufficient 2D-3D correspondences (denoted as H)
- Assumption of K-Cover based Methods
 - Discrete-database images well describe continuous 3D geometric space •
 - Each database image observes at least K (H>=K) points -> A random view is likely to observe at least *K* points, i.e., the corresponding query image is likely to establish at least K 2D-3D correspondences (also H>=K)
 - The assumptions do not always hold (i.e., H may be lower than K)

Visibility (as a measure of point saliency) Probability

• Straightforward definition for a single point P_j

$$\phi(P_j) = \frac{d(P_j)}{m} \xrightarrow{\longrightarrow} \text{No. of database images observing point } P_j$$
$$\xrightarrow{\longrightarrow} \text{No. of all database images}$$
$$= \frac{\sum_i G_{ij}}{m}$$

- Resultant Visibility Probability $V(P_i)$ in a PC
 - $\phi(P_j)$ is an approximation of $V(P_j)$ when database images are densely distributed
 - Need to evaluate the distribution of database images in the PC (next slide)

Density Estimation on Graph

Density of database images can be computed on image overlap graph \mathcal{O} (constructed from G)

3D point

(database images are not dense, or not from many angles)

Graph Density (D) Estimation:

$$D = \frac{2e}{m(m-1)}$$

e: number of edges in \mathcal{O} m: number of nodes in \mathcal{O}

Computing
$$V(P_j)$$
:

$$V(P_j) = f(D)\phi(P_j)$$

f(D): a weighting function based on D

e.g., $f(D) = (1 - 6.72e^{-213D})$

Model (K,H) Poisson Binomial Distribution, based on 3D point's visibility probability $V(P_j)$:

 $X_j \sim Bernoulli(V(P_j)), j = 1, ..., \tau$ $\tau = n$ for original PC Probability for P_j being visible: $Pr(X_j = 1) = V(P_j)$ Probability for P_j being not visible: $Pr(X_j = 0) = 1 - V(P_j)$ Total no. of points visible with a view: $X = \sum_{j=1}^{\tau} X_j$.

Approximation using Central Limit Theore... $\sum_{k=1}^{j=1} \sum k$ the paper for more details):

Cumulative Distribution Function for γ points visible with a view: $Pr(X > \gamma) \approx 1 - \Phi(\frac{\gamma + 0.5 - \mu}{\sigma})$

 Φ : Normal distribution

$$\mu = E(X) = \sum_{j=1}^{\tau} V(P_j)$$

$$\sigma = (\mu)^{1/2}$$
, when $V(P_j) \ll 1$ (i.e., for large databases)

H: the minimum/required no. of 2D-3D correspondences from any view for a required R

or

the largest no. of 2D-3D correspondences from any view for a K for simplification

Cheng, et al, A Data-Driven Point Cloud Simplification Framework for City-Scale Image-Based Localization. IEEE **TIP**, 2017.

Evaluating AEWKC -Cheng, et al, IEEE TIP'17

localization performance

• Especially when simplifying to < 1% original size

The proposed methods													
	(A) Dubrovnik dataset						(B) Rome dataset						
K	#points	%points	$\mathrm{KC}(\%)$	PKC(%)	WKC(%)	AEWKC(%)	K	#points	%points	$\mathrm{KC}(\%)$	PKC(%)	WKC(%)	AEWKC(%)
12	5808	0.31	40.43	40.53	59.82	67.65	6	5109	0.13	45.61	46.05	61.78	67.66
15	7571	0.40	51.79	52.68	71.15	76.10	8	7053	0.17	63.22	64.43	72.82	74.69
18	9391	0.50	61.98	62.56	78.06	80.44	10	9117	0.22	72.03	72.99	78.27	79.45
20	10615	0.56	68.99	67.44	80.71	82.96	12	11216	0.28	77.93	78.66	82.23	82.75
22	11894	0.63	72.25	73.75	83.22	84.20	15	14598	0.36	83.83	83.90	83.98	86.78
25	13877	0.74	78.78	79.37	86.25	86.20	18	18071	0.44	86.84	86.66	87.66	88.25
28	15895	0.84	82.50	83.25	88.43	89.06	20	20426	0.50	88.28	88.25	89.12	89.24
30	17147	0.91	84.61	84.50	89.50	89.83	22	22828	0.56	89.04	88.92	90.35	90.05
32	18700	1.00 🔺	86.54	86.74	90.00	89.75	25	26560	0.65	90.65	90.30	91.15	91.33
35	20807	1.10	88.01	88.19	91.05	90.68	28	30367	0.75	91.75	91.52	91.82	91.99

(C) Aachen dataset

K	#points	%points	$\mathrm{KC}(\%)$	PKC(%)	WKC(%)	AEWKC(%)
50	19487	1.26	46.07	46.31	55.28	60.43
60	24036	1.56	53.38	54.90	59.62	63.68
70	28693	1.86	58.53	56.36	62.87	65.58
80	33445	2.17	63.14	63.68	65.85	67.20
90	38290	2.49	64.22	64.66	68.83	67.15
100	43186	2.80	67.20	64.55	68.29	69.10
110	48141	3.12	67.20	66.80	71.00	71.17
120	53220	3.45	68.02	68.56	72.08	72.08
130	58394	3.79	70.00	70.00	72.95	73.14
140	63613	4.13	71.05	71.07	73.71	74.07

KC: Li, *et.al.*, ECCV 10 PKC: Cao, *et.al.*, CVPR 14 WKC: Cheng, *et.al.*, ICMEW 15 AEWKC: our method

More details of related research:

Cheng, et al, A Two-stage Outlier Filtering Framework for City-Scale Localization using 3D SfM Point Clouds.. IEEE Transaction on Image Processing (TIP), 2019.

Cheng, et al, Cascaded Parallel Filtering for Memory-efficient Image-based Localization. International Conference on Computer Vision (ICCV) 2019

W. Lin, S. Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. on Signal and Information Processing, 11(1): e28, 2022. http://dx.doi.org/10.1561/116.00000125

Chen, et al, "No-Reference Point Cloud Quality Assessment via Graph Convolutional Network", IEEE Trans. on Multimedia, 27: 2489 – 2502, 2024.

Chen, et al., "Dynamic Hypergraph Convolutional Network for No-Reference Point Cloud Quality Assessment", IEEE Trans. on Circuits and Systems for Video Technology, 34(10):10479 – 10493, 2024.

Lee, et al, "3D-PSSIM: Projective Structural Similarity for 3D Mesh Quality Assessment Robust to Topological Irregularities", IEEE Trans on Pattern Analysis and Machine Intelligence, 46(12): 9595 – 9611, 2024.

The rest of this talk: to present related recent research attempts... to address the major challenges

- PC representation
 - Compression
 - Mesh reconstruction
- PC saliency determination
- Image-based localization, for practical applications
 PC simplification
 - PC quality assessment
- Moving forward

Summary

- Introduction to 3D point clouds (PCs)
 Increasingly important area; a lot to be done
- PC representation
 - Intrinsic measure
 - Resampling/simplification
 - Mesh construction
 - Compression & other representations
- PC saliency & quality
 - Initial models for human and machine uses, respectively
- Exemplary utilities of PCs
 - image-based localization with PCs, PC registration, and remeshing

further discussion

Information Saliency & Sufficiency/Quality of 3D PCs
 For humans

According to visualization result: esp for small objects, or relatively simple scene • For machines: utility-based definitions, esp for city-scale PCs e.g., visibility, H measure, etc, toward image-based localization

To further exploit (cont'd):

- 3D PC compression
 - **PC-dedicated coders**
 - Demerging deep learning-based coding
 - □lightweight learning model compression for green computing
- PC denoising, SR, edge detection, inpainting, ...
- More utilities for PCs: recognition, classification, autonomous driving & flying, robots, building Information Models (BIM), VR/AR/MR, smart manufacturing, urban surveillance and planning, cultural heritage preservation, and other tasks in smart cities

Lin & Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. Signal and Info Processing, 11(1), e28, 2022.

To further exploit (cont'd):

- PC saliency & quality modeling
 - For human tasks
 - □for machine tasks
 - Dpossibilities for formulating for both human & machine uses
 - □Just-noticeable difference (JND) for PCs
 - **U**tility-oriented models
 - To consider technical quality, aesthetic quality, visual discomfort & Uncanny Valley together
- Medical and biological scenarios
- To explore possible advantages enabled by connected computer vision and graphics ...

Lin & Ghinea, "Progress and Opportunities in Modelling Just-Noticeable Difference (JND) for Multimedia", IEEE TMM, 2022. OGICAL Lin & Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. Signal and ITY RE Info Processing, 11(1), e28, 2022.

More opportunities?

PC representation (as presented earlier)

The j^{th} point in a PC, Ω , with K points totally, can be expressed as a vector:

$$\omega_j = [g_j, c_j, a_j], j = 1, 2, \dots, K \tag{1}$$

where $g_j = [x_j, y_j, z_j]$ and $c_j = [r_j, g_j, b_j]$ being the geometry information (point position) and attribute information (RGB values), respectively; a_j represents auxiliary descriptor(s), such as the derived surface normal, and in a SfM PC, it can represent the SIFTs and database image associated to the point; and

$$\Omega = \{\omega_j, j = 1, 2, ..., K\}.$$

PC representation extended to true multimedia

Take olfaction as an example to add to the PC representation for an arbitrary point:

$$\widetilde{\omega}_j = [\omega_j, o_j], j = 1, 2, \dots, K,$$

where ω_j is defined in Equation (1), and $o_j = [e_j^1, e_j^2, \dots, e_j^P, f_j, d_j, i_j]$ denotes the olfactory descriptor.

Cross-modal effects must be considered (e.g., between visual and olfaction and among visual, olfaction, and taste):

$$\boldsymbol{S} = \sum_{\iota=1}^n S(\iota) - \sum_{\iota=1}^n \sum_{\rho=\iota+1}^n \varepsilon(\iota,\rho) \Psi(S(\iota),S(\rho))$$

Lin & Ghinea, "Progress and Opportunities in Modelling Just-Noticeable Difference (JND) for Multimedia", IEEE TMM, 2022.

Lin & Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. Signal and Info Processing, 11(1), e28, 2022.

Some of the speaker's papers closely related to this presentation

- o C. Lv, W. Lin, J. Zheng, "Adaptively Isotropic Remeshing based on Curvature Smoothed Field", IEEE Transactions on Visualization and Computer Graphics, accepted.
- o C. Lv, W. Lin, B. Zhao, "Intrinsic and Isotropic Resampling for 3D Point Clouds", IEEE Trans on Pattern Analysis and Machine Intelligence, accepted
- C. Lv, W. Lin, B. Zhao, "KSS-ICP: Point Cloud Registration based on Kendall Shape Space", IEEE Transactions on Image Processing, 32: 1681-1693, 2023
- o C. Lv, W. Lin, B. Zhao, "Voxel Structure-based Mesh Reconstruction from a 3D Point Cloud", IEEE Transactions on Multimedia, accepted
- W. Lin, S. Lee, "Visual Saliency and Quality Evaluation for 3D Point Clouds and Meshes: An Overview", APSIPA Trans. on Signal and Information Processing, 11(1), e28, 2022.
- o C. Lv, W. Lin, B. Zhao, "Approximate Intrinsic Voxel Structure for Point Cloud Simplification", IEEE Transactions on Image Processing, 30(9): 7241 7255, 2021
- J. Xiong, H. Gao, M. Wang, H. Li, W. Lin, "Occupancy Map Guided Fast Video based Dynamic Point Cloud Coding", IEEE Transactions on Circuits and Systems for Video Technology, accepted.
- W. Lin, G. Ghinea, "Progress and Opportunities in Modelling Just-Noticeable Difference (JND) for Multimedia", IEEE TMM, 2022.
- B. Zhao, W. Lin, C. Lv, "Fine-Grained Patch Segmentation and Rasterization for 3D Point Cloud Attribute Compression", IEEE Trans. on Circuits and Systems for Video Technology, 31(12): 4590-4602, 2021.
- W. Cheng, W. Lin, K. Chen, X. Zhang, "Cascaded Parallel Filtering for Memory Efficient Image-based Localization", International Conference on Computer Vision (ICCV), 2019
- X. Ding, W. Lin, Z. Chen, X. Zhang, "Point Cloud Saliency Detection by Local and Global Feature Fusion", IEEE Transactions on Image Processing, 28(11): 5379–5393, 2019
- W. Cheng, K. Chen, W. Lin, M. Goesele, X. Zhang, Y. Zhang, "A Two-stage Outlier Filtering Framework for City-Scale Localization using 3D SfM Point Clouds", IEEE Transactions on Image Processing, 28(10): 4857 - 4869, 2019
- J. Hou, B. Zhao, N. Ansari, W. Lin, "Range Image Based Point Cloud Colorization Using Conditional Generative Model", IEEE International Conference on Image Processing (ICIP), 2019
- W. Cheng, W. Lin, X. Zhang, M. Goesele, M-T Sun, "A Data-driven Point Cloud Simplification Framework for City-scale Image-based Localization", IEEE Transactions on Image Processing, 26(1): 262-275, 2017
- S. M. Prakhya, B. Liu, W. Lin, V. Jakhetiya, S. C. Guntuku, "B-SHOT: A Binary 3D Feature Descriptor for Fast Keypoint Matching on 3D Point Clouds", Autonomous Robots, 41(7):1501–1520, 2017.
- S. M Prakhya, J. Lin, V. Chandrasekhar, W. Lin, B. Liu, "3DHoPD: A Fast Low Dimensional 3D Descriptor", IEEE Robotics and Automation Letters, 2(3): 1472-1479, 2017.
- S. M. Prakhya, W. Lin, V. Chandrasekhar, B. Liu, J. Lin, "Low Bit-rate 3D Feature Descriptors for Depth Data from Kinect-style Sensors", Signal Processing: Image Communication, 51: 40–49, 2017
- o S. M. Prakhya, B. Liu, W. Lin, "Detecting Keypoint Sets on 3D Point Clouds via Histogram of Normal Orientations", Pattern Recognition Letters, 83 (Part 1): 42–48, 2016.
- S. M. Prakhya, B. Liu, W. Lin, "B-SHOT: A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015

