Rodrigues' Rotation Formula

Author: Gemini Pro 3 & Levente Hajder

December 11, 2025

Introduction

Rodrigues' rotation formula is an efficient algorithm used in 3D geometry and computer graphics to rotate a vector in space. It rotates a vector \mathbf{v} by an angle θ around a fixed axis defined by a unit vector \mathbf{k} .

The Formula

The rotated vector \mathbf{v}_{rot} is given by:

$$|\mathbf{v}_{\text{rot}} = \mathbf{v}\cos\theta + (\mathbf{k} \times \mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k} \cdot \mathbf{v})(1 - \cos\theta)|$$
 (1)

Where:

- **v** is the original vector.
- **k** is the unit vector describing the rotation axis ($|\mathbf{k}| = 1$).
- θ is the angle of rotation (following the right-hand rule).

Geometric Derivation

The derivation relies on decomposing the vector \mathbf{v} into two components relative to the rotation axis \mathbf{k} : one parallel and one perpendicular.

1. Vector Decomposition

We resolve \mathbf{v} into a component parallel to \mathbf{k} (\mathbf{v}_{\parallel}) and a component perpendicular to \mathbf{k} (\mathbf{v}_{\perp}):

$$\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$$

The parallel component is the projection of \mathbf{v} onto \mathbf{k} :

$$\mathbf{v}_{\parallel} = (\mathbf{v} \cdot \mathbf{k})\mathbf{k} \tag{2}$$

The perpendicular component is simply the difference:

$$\mathbf{v}_{\perp} = \mathbf{v} - \mathbf{v}_{\parallel} = \mathbf{v} - (\mathbf{v} \cdot \mathbf{k})\mathbf{k} \tag{3}$$

2. Rotating the Components

When we perform the rotation:

- The parallel component \mathbf{v}_{\parallel} lies on the axis of rotation, so it **remains unchanged**.
- The perpendicular component \mathbf{v}_{\perp} rotates in the plane perpendicular to \mathbf{k} .

To describe the rotation of \mathbf{v}_{\perp} in 2D, we need an orthogonal basis in the rotation plane. We already have \mathbf{v}_{\perp} . We can construct a second vector \mathbf{w} that is perpendicular to both \mathbf{k} and \mathbf{v}_{\perp} using the cross product:

$$\mathbf{w} = \mathbf{k} \times \mathbf{v}_{\perp} = \mathbf{k} \times \mathbf{v}$$

(Note: \mathbf{w} has the same magnitude as \mathbf{v}_{\perp} but is rotated by 90°).

The rotated perpendicular component $\mathbf{v}_{\perp,\mathrm{rot}}$ is a linear combination of \mathbf{v}_{\perp} and \mathbf{w} :

$$\mathbf{v}_{\perp,\text{rot}} = \mathbf{v}_{\perp} \cos \theta + \mathbf{w} \sin \theta \tag{4}$$

3. Reassembling the Vector

The final rotated vector is the sum of the unchanged parallel part and the rotated perpendicular part:

$$\mathbf{v}_{\mathrm{rot}} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp,\mathrm{rot}}$$

Substituting the terms derived above:

$$\mathbf{v}_{\rm rot} = \mathbf{v}_{\parallel} + (\mathbf{v}_{\perp} \cos \theta + (\mathbf{k} \times \mathbf{v}) \sin \theta)$$

Now, substitute $\mathbf{v}_{\perp} = \mathbf{v} - \mathbf{v}_{\parallel}$:

$$\mathbf{v}_{\mathrm{rot}} = \mathbf{v}_{\parallel} + (\mathbf{v} - \mathbf{v}_{\parallel})\cos\theta + (\mathbf{k} \times \mathbf{v})\sin\theta$$

Group the terms by \mathbf{v}_{\parallel} :

$$\mathbf{v}_{\text{rot}} = \mathbf{v}\cos\theta + (\mathbf{k}\times\mathbf{v})\sin\theta + \mathbf{v}_{\parallel}(1-\cos\theta)$$

Finally, substitute $\mathbf{v}_{\parallel} = (\mathbf{v} \cdot \mathbf{k})\mathbf{k}$ to obtain the final formula:

$$\mathbf{v}_{\text{rot}} = \mathbf{v}\cos\theta + (\mathbf{k}\times\mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k}\cdot\mathbf{v})(1-\cos\theta)$$

3. Matrix Representation

To find the rotation matrix R such that $\mathbf{v}' = R\mathbf{v}$, we convert the vector operations into matrix form.

- 1. Identity: $\mathbf{v} \to I\mathbf{v}$
- 2. Cross Product: $\mathbf{k} \times \mathbf{v} \to [\mathbf{k}]_{\times} \mathbf{v}$ (Where $[\mathbf{k}]_{\times}$ is the skew-symmetric matrix of \mathbf{k} .)
- 3. Tensor Product: $\mathbf{k}(\mathbf{k} \cdot \mathbf{v}) \rightarrow (\mathbf{k}\mathbf{k}^T)\mathbf{v}$

The equation becomes:

$$R = I\cos(\theta) + [\mathbf{k}]_{\times}\sin(\theta) + (\mathbf{k}\mathbf{k}^T)(1-\cos(\theta))$$

Final Compact Form

Using the identity $\mathbf{k}\mathbf{k}^T = I + [\mathbf{k}]_{\times}^2$, we arrive at the standard Rodrigues' Rotation Formula:

$$R = I + (\sin \theta)[\mathbf{k}]_{\times} + (1 - \cos \theta)[\mathbf{k}]_{\times}^{2}$$

Where $[\mathbf{k}]_{\times}$ is defined as:

$$[\mathbf{k}]_{\times} = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}$$