We have a novel paper, accepted for ICCV2023.

Authors: Levente Hajder, Lajos Lóczi, Daniel Barath

Abstract

We present a new solver for estimating a surface normal from a single affine correspondence in two calibrated views. The proposed approach provides a new globally optimal solution for this over-determined problem and proves that it reduces to a linear system that can be solved extremely efficiently. This allows for performing significantly faster than other recent methods, solving the same problem and obtaining the same globally optimal solution. We demonstrate on 15k image pairs from standard benchmarks that the proposed approach leads to the same results as other optimal algorithms while being, on average, five times faster than the fastest alternative. Besides its theoretical value, we demonstrate that such an approach has clear benefits, e.g., in image-based visual localization, due to not requiring a dense point cloud to recover the surface normal. We show on the Cambridge Landmarks dataset that leveraging the proposed surface normal estimation further improves localization accuracy. Matlab and C++ implementations are also published in the supplementary material.

Explore More

Háromdimenziós érzékelés járműre rögzített szenzorok segítségével – avagy hogyan lát egy önvezető autó?

Alighanem mindenki látott már sofőr nélkül közlekedő, önvezető járműveket tudományos-fantasztikus filmekben. Szakértők még 15-20 éve is úgy gondolták, hogy az ilyen közlekedési eszközök mára mindennaposak lesznek. Bár az autógyártók egyre

Code #LikeABosch – Hackademix

Dear MSc and BSc Students,    We are pleased to announce the third Bosch programming contest for location detection. The contest is open to BSc and MSc students of ELTE, BME, ÓE,

Videótár

Önvezető rendszerek fejlesztése az ELTE Informatikai Karán – Nyílt Nap 2023.01.20. Computer Vision Research at the ELTE Faculty of Informatics GCVG bemutatkozó videó Relative planar motion for vehicle-mounted cameras from